# **Deep Learning meets Physics**



Prof. Dr. Martin Erdmann, RWTH Aachen University, 14-Sep-2021



### Deep Learning spectacular success

### Image recognition challenge









quail



flamingo



cock



Persian cat Siamese cat



tabby

lynx

partridge

### ImageNet: 1.2 million images in 1000 categories

ruffed grouse



O. Russakovsky et al, arXiv:1409.0575; K. He, X. Zhang, S. Ren, J. Sunar, arXiv:1512.03385 WMW Jie Hu, Li Shen (Oxford), Gang Sun, 2017

### Generative Modeling



### https://thispersondoesnotexist.com

### Plan for today

- 1. What deep learning is precisely: neural networks
- 2. Deep learning & data symmetries
- 3. Autonomous model building
- 4. Experiments' operation reality and network insight

## Data analysis $\rightarrow$ deep learning



variable = *feature* 



McCulloch, W.S., Pitts, W.: Bulletin of Mathematical Biophysics (1943) 5: 115. Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961

## Neural Network Operations





Martin Erdmann, RWTH Aachen University

6

## Neural Network Training



Data set

 $\{x_i, y_i\} \quad i = 1, ..., N$ 

Define model

 $y_m(x) = W x + b$ 

- Define objective function (=loss, cost)  $\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} [y_m(x_i) - y_i]^2$
- Train model by optimizing the parameters
  - $(\widehat{W}, \widehat{b}) = \arg \min \mathcal{L}(W, b)$

### ('supervised')



## Automated parameterization of arbitrary function





7 hidden layers 200 nodes each **ReLU** activation function

original function (black symbols): fair description after 2800 training steps (purple)

- $\vec{x} \in \mathbb{R}^n \rightarrow \vec{z} \in \mathbb{R}^m$
- Function: training is million-parameter fit

*Reality: function working in multi-dimensions* 

## Deep Learning Progress

### Concepts

- Fully connected
- Convolutional
- Graph
- Recurrent
- Lorentz Boost Network
- Autoencoder
- Adversarial
- Reinforcement
- Invertible



### Improved set of tools



Martin Erdmann, RWTH Aachen University

### Computing

- Graphics Processing Unit (GPU)
- Software Libraries
  - TensorFlow
  - keras...



# Deep learning & data symmetries

...looking for better ways than 1 pixel = 1 network input node

## **Convolutional network** to analyse image-like data



### Convolutional network to identify electron neutrinos



Martin Erdmann, RWTH Aachen University

A. Aurisano et al., JINST 11 (2016) P09001



| od                    | <pre>v<sub>e</sub>efficiency (same purity)</pre> |  |
|-----------------------|--------------------------------------------------|--|
| ists<br>thm           | 35%                                              |  |
| learning<br>I network | 49%                                              |  |

## **Convolution:** *Classic* versus *Graph* network







T. Bister, M. Erdmann, J. Glombitza, N. Langner, J. Schulte, M. Wirtz, arXiv:2003.13038

### Graph convolutions to detect cosmic magnetic fields





## World's largest Calorimeter for Cosmic Rays





air Water Cherenkov detectors 55 km

Martin Erdmann, RWTH Aachen University

### Pierre Auger Observatory



### Cosmic ray arrival directions by physicist or network



Martin Erdmann, RWTH Aachen University

M. Erdmann, Jonas Glombitza, David Walz, 10.1016/j.astropartphys.2017.10.006

### **Deep Neural Network**

No physics education

- No explicit information about
- locations of detectors
- speed of light

Needs data with true target  $\theta$ 

Deep Neural Network learns physics from data within 3h

M. Erdmann, Jonas Glombitza, David Walz, 10.1016/j.astropartphys.2017.10.006 Jonas Glombitza for the Pierre Auger Collaboration arXiv:2101.02946

## **Recurrent network** to characterize signal traces



Martin Erdmann, RWTH Aachen University



**Deep Neural Network** 

Emiel Hoogeboom, Jorn W.T. Peters, Taco S. Cohen, Max Welling, arXiv:1803.02108 Jonas Glombitza for the Pierre Auger Collaboration arXiv:2101.02946

## Hexagonal convolutions to symmetrize azimuth $\boldsymbol{\varphi}$



Martin Erdmann, RWTH Aachen University



# Autonomous model building

Assign functional target → training data optimize network (`unsupervised')

Martin Erdmann, RWTH Aachen University

### **)g** pervised´)

## Autoencoder networks to identify new physics

T. Heimel, G. Kasieczka, T. Plehn, J.M. Thompson, SciPost Phys. 6, 030 (2019)





Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua BengioarXiv:1406.2661 M. Erdmann, J. Glombitza, T. Quast, Comput Softw Big Sci (2019) 3: 4

### Generative Modeling to simulate particle showers



### Invertible Networks to map probability distributions



S. Radev, U. Mertens, A. Voss, L. Ardizzone, U. Köthe, arxiv 2003.06281 J. Schulte, T. Bister, M. Erdmann, RWTH Aachen M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder, L. Ardizzone, U. Köthe, SciPost Phys. 9, 074 (2020)



Martin Erdmann, RWTH Aachen University

### Invertible Networks to map probability distributions





Martin Erdmann, RWTH Aachen University

### **Invertible Networks** to unfold observed data



Martin Erdmann, RWTH Aachen University



# Operation reality & network insight

Solved long-standing machine learning problem data ≠ simulation

M. Erdmann, Lukas Geiger, Jonas Glombitza, David Schmidt, Comput Softw Big Sci (2018) 2:4 M. Erdmann, Jonas Glombitza, David Walz, 10.1016/j.astropartphys.2017.10.006

### **Domain adaption** to simulate data-like



Martin Erdmann, RWTH Aachen University



improved

resolution

### Simulation: include operation reality for network training



### $\rightarrow$ Improved generalization capability of trained neural network

Martin Erdmann, RWTH Aachen University

### Jonas Glombitza for the Pierre Auger Collaboration arXiv:2101.02946

### Network training with simulated data including defects



27

## Causality: analysis of network predictions

*Measure impact: input*  $x_i \rightarrow overall prediction$ 

G. Montavon, W. Samek, K.-R. Müller, Digital Signal Processing 73 (2018) 1





28

## Messages Deep Learning

- **Physicists** exploit more information from data: choose network according to data symmetries
- Standard network like fitting functions, except network is ultra-flexible physics model
- Advanced concepts assign **functional targets**, training data **autonomously** optimize network
- Tools exist for including experiment's **operation reality** and obtaining **insight** into networks

### We ought to prepare for fundamental change to include machines in our daily work

# backup

## CMS jet flavor tagging



the 1-dim Convolution adds up all properties of a track. In the RNN the summed properties of the tracks are merged.

Martin Erdmann, RWTH Aachen University

Markus Stoye, ACAT2017, CMS DSP-2017-005/013/027



## Denoising Gravitational Waves with **Recurrent Denoising Autoencoder**



Martin Erdmann, RWTH Aachen University

### Hongyu Shen, Daniel George, E. A. Huerta, Zhizhen Zhao1, arXiv:1711.09919



## **Self Normalizing Networks**

- Batch normalization adds perturbations for training fully connected networks
- Use activation function *selu* which ensures standard normalized output:  $\mu = 0, \sigma = 1$
- Initialization:

Gauß with  $\mu = 0$ ,  $\sigma = 1/n$  with n=nodes in lower layer

• Alpha-dropout

(insert specified value instead of turning node off)

- Stabilizes the training
- Allows to build very deep networks!



$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\nu_j = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_j)^2$$

$$(\mu_{i+1}) \qquad (\mu_i)$$

$$\begin{pmatrix} \mu_{j+1} \\ \nu_{j+1} \end{pmatrix} = K \begin{pmatrix} \mu_j \\ \nu_j \end{pmatrix}$$



$$\operatorname{selu}(x) =$$



**Requirements:** negative & positive values to control the mean Slope < 1 for damping the variance Slope > 1 to rise the variance

result activation function

### Cosmic ray: shower maximum



### correct for atmosphere





moonless nights

## Fluorescence Light Detection





Martin Erdmann, RWTH Aachen University



 $\rho(h) = \rho_o e^{-\frac{\rho_o}{p_o}gh}$ 

### Maximum of shower development directly visible in the camera during 35

### Air shower maximum with particle detectors on Earth



electromagnetic component + muons: depending on height of 1st interaction shower particles differ when reaching earth







Martin Erdmann, RWTH Aachen University



Jonas Glombitza, PhD thesis, RWTH Aachen



### Cosmic Rays: Energies & Nuclei



M. Erdmann, E. Geiser, Y. Rath, M. Rieger, JINST 14 (2019) P06006

## Lorentz Boost Network to recover interaction



### M. Erdmann, E. Geiser, Y. Rath, M. Rieger, JINST 14 (2019) P06006 Autonomous engineering of discriminating variables

