Physics with Rivet v1

2021-07-26

All infos are in **DESY cloud**.

A documentation on Rivet you will find on http://projects.hepforge.org/rivet/.

We'll assume, you have done the Rivet warm-up exercise and know how to run Rivet on a hepmc file and produce distributions.

pp collisions

- 1. Use e^+e^- scattering and plot $1/N dn/d\eta$ as well as $1/N dn/d\cos\theta$
 - 1. why are the distributions peaked at different values (around 0 for $dn/d\eta$ and around +-1 $dn/d\cos\theta$)?
- 2. Use $pp \rightarrow e^+e^- + X$ and plot $1/N dn/d\eta$ as well as $1/N dn/d\cos\theta$
 - 1. how are the distributions, why are they different from e^+e^- ?
 - 2. plot p_T of the e^+e^- pair (check influence of parton shower)
- 3. Use $pp \rightarrow X$ (low p_T process, minimum bias) and plot $1/N dn/d\eta$
 - 1. how are the distributions ?
 - 2. check the influence of parton shower and MPI

ep collisions

- 1. Use $ep \rightarrow e'X$ and plot x, Q2, y and $1/N dn/d\eta$ (excluding the scattered electron)
 - use lab frame
 - boost to hadronic center-of-mass frame (how different are distributions)
 - why are they different ?