Pad saturation test results

Shan & Yan shan.huang@desy.de

8 July 2021

Signal infomation

Signal positron energy spectrum

Singal positron number over BXs

The ECAL would be saturated once the multiplicity reached a threshold

Dynamic ranges for 10-bit ADC

- 10-bit ADC has 1024 steps for data read-out
- Using each step for 1 MIP, the testing range will fall to (0, 1024) MIPs
- Two methods to go around this saturation
 - switch to low-gain preamplifier, with each step for 2 MIPs: range (0, 2048) MIPs a)
 - make the pad smaller to ease the burden of MIP per pad (namely, E_{dep} density) b)
- Without the details in GEANT4, we assume E_{dep} in a pad averagely distributed (at x-direction)

One pad averagely cut into 16 pads

Not suitable if the shower is constrained in y-direction

One pad cut into 4 pads along x-direction

<u>TODO</u>: study the E_{dep} distribution along y-direction

Dynamic ranges for 10-bit ADC

- step will be 1024/25 MIP mm⁻²
- Cut-out error = Higher E_{dep} High Threshold (set to 1023.5 MIPs)
- To provide a higher detectable E_{dep} density, Yan suggested a non-symmetric ECAL
 - having finer pad in high E_{dep} density to get a better performance
 - using the normal-size pad in low E_{dep} density region to save budget
 - For the stronger showers, we have to turn to low-gain preamplifier with larger MIP step
- Questions & Difficulties to be solved
 - Where to put the finer pads?
 - How to adapt the change of geometry/setups?

• For a 5x5 mm² pad, the supportable energy deposition density free from saturation/cut with 1 MIP

• BX that would be influenced by the cut-out has at least one pad with E_{dep} higher than the threshold

Dynamic ranges

for 10-bit ADC

Pad size	5 x 5 mm²	5 x 2.5 mm ²	5 x 1 mm ²	5 x 0.5 mm ²	5 x 0.25 mm ²		
Manageable E _{dep} density (MIP mm ⁻²)	40	80	200	400	800		
BX been cut out of 907 BXs	79.2%	55.1%	17.8%	1.9%	0.0%		
Pad size	5 x 5 mm ²	2.5 x 2.5 mm ²	1.7 x 1.7 mm ²	1.2 x 1.2 mm ²	1 x 1 mm ²		
Pad size Manageable E _{dep} density (MIP mm ⁻²)	5 x 5 mm² 40	2.5 x 2.5 mm² 160	1.7 x 1.7 mm² 360	1.2 x 1.2 mm² 640	1 x 1 mm² 1000		

Energy deposition per pad all layers added up

Spectrum of energy deposition per pad

CDF (integrand) of the spectrum

Error out of dynamic range (0, 1024) MIPs for 10-bit ADC 1 MIP = 4 fC = 90 keV718 BX will be influenced IPstrong MC 3 um e-laser (907 BX) by the cut at 1024 MIPs

Layer	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	15
cut-out pads (%)	5.8	6.8	7.4	7.5	7.2	6.9	6.5	5.9	5.4	4.8	4.4	4.0	3.8	3.7	3.7	3.9	4.0	4.3	4.6	4.
Error E _{dep} (kMIP)	16.58	2008	8179	14661	18398	18707	16381	12754	8923	5609	3136	1532	628.9	204.6	49.25	11.16	4.39	4.11	4.12	3.9
Error E _{dep} (MeV/BX)	1.64	199	812	1455	1826	1856	1625	1266	885	556	311	152	62.4	20.3	4.89	1.11	0.44	0.04	0.41	0.3
Error/ Total E _{dep} (%)	0.23	10.2	23.0	29.6	31.7	31.0	28.4	24.5	19.8	14.9	10.2	6.20	3.21	1.33	0.41	0.12	0.06	0.08	0.10	0.1
Total E _{dep} (MeV/BX)	701	1946	3522	4910	5755	5985	5725	5168	4466	3739	3056	2454	1943	1521	1178	907	695	528	401	30

- Find the best position for finer pad (to detect higher E_{dep} density)
- High MIP pads located on the y's central pad (-2.5 mm, 2.5 mm) of each layer
- Edep spectrum is proportional to the positron spectrum and the energy of positron • Two ways to identify the E_{dep} in a pad over BXs:
 - the highest E_{dep} over BXs
 - the averaged E_{dep} over BXs
 - The position with the highest MIP density differs in this two methods

Edep heatmap

Peak Edep heatmap per layer

Layers 3-5

Saturated set at

160 MIP mm⁻² LUXE ECAL electron+laser 3 um

Peak Edep heatmap per layer

Layers 6-8

LUXE ECAL electron+laser 3 um max E_{dep} density (Layer 6) E (GeV) 15 10 2 1.5 15 10 3 5 -5 20 150 20 $E_{
m dep}$ density (MIP mm^2) 10 10 100 y (mm) y (mm) 50 -10 -10 0 -20 -20 200 300 400 500 100 100 x (mm)

Saturated at

max E_{dep} density (Layer 8) E (GeV) 15 10 3 2 1.5 5 20 10 -10 -20 200 500 100 300 400 x (mm)

y (mm)

LUXE ECAL electron+laser 3 um

Averaged Edep heatmap per layer

Layers 3-5

Saturated at

40 MIP mm⁻²

LUXE ECAL electron+laser 3 um

x (mm)

Averaged Edep heatmap per layer

Layers 6-8

Saturated at

40 MIP mm⁻²

