Physics Landscape

Beate Heinemann

University of California at Berkeley and Lawrence Berkeley National Laboratory German LHC Physics School, DESY, September 2010

The Standard Model and the Questions Hadron Colliders can (maybe) answer

- Is **QCD** describing the data at highest energies?
 - Are the calculations adequate?
- What is the origin of electroweak symmetry breaking?
 - Is there a Higgs boson?
- Is the CKM matrix the only source of CP violation?
- What is the **Dark Matter**?
 - Is it produced it at colliders?
- Are there new dimensions of space?
 - Or e.g. extended gauge sectors, leptoquarks,...?

2

Is there anything that no one has thought of?

Outline

- Testing Particle Production
 - Jets, W's and Z's, top quarks

Electroweak Symmetry Breaking

- W boson mass
- Top quark mass
- Higgs boson search

Beyond the Standard Model

- Supersymmetry
- Beyond SUSY

Conclusions

Tevatron and LHC

Tevatron:

- pp collider operating since 1985, "Run 2" since 2001
- $-\sqrt{s}$ =1.96 TeV, dataset collected 9 fb⁻¹
- LHC:
 - pp collider operating since March 2010 at high energy
 - $-\sqrt{s}=7$ TeV, dataset collected 6.5 pb⁻¹

Production of Particles

Luminosity and Cross Sections

- Single most important quantity
 - Drives our ability to detect new processes

$$L = \frac{f_{rev} n_{bunch} N_p N_p}{4 \pi \sigma_x \sigma_y}$$

Rate of physics processes per unit time directly related:

6 Luminosity Uncertainty: 6% (Tevatron), 11% (LHC)

Physics Cross Sections

- JLdt=1 fb⁻¹ at LHC competitive with 10 fb⁻¹ at Tevatron for high mass processes
- $\int_{7}^{1} \text{Ldt} = 100 \text{ pb}^{-1}$ already interesting in some cases

Jet Cross Sections

Inclusive jets: processes qq, qg, gg

- Highest E_T probes shortest distances
 - Tevatron: $r_q < 10^{-18}$ m
- Tests perturbative QCD at highest energies
- Also sensitive to new physics creating dijet resonance

- Cross section measured over 7 orders of magnitude
- Data well described by Standard Model prediction up to masses of 1.3 TeV

W Transverse mass (GeV)

110

120

M(µ⁺µ⁻) [GeV]

 $\sqrt{s} = 7 \text{ TeV}$

W and Z production

Tevatron

- Data precision: 6% (lumi), 2% (syst.+stat.)
- Theory precision (NNLO QCD): 2%

LHC

- Initial results also agree with theory

May be able to use this process to normalize luminosity

Top Quark Production and Decay

Mainly produced in pairs via the strong interaction

Br(t →Wb) ~ 100% Decay via the electroweak interactions 1st W decays to: Final state is characterized by the decay of the W boson jets τ μe iets lepton+jets I, a 2nd W decays to: all-jets v**, q** t 4 H lepton+jets dilepton 0

Different sensitivity and challenges in each channel Lepton+jets is has best sensitivity

The Top Cross Section

Basic selection:

- -1 high p_T electron or muon
- Large missing E_T
- At least 3 jets

 Good agreement between all measurements (precision 6%) and between data and theory

Electroweak Symmetry Breaking

The Electroweak Precision Data

Precision measurements of

- muon decay constant and $\boldsymbol{\alpha}$
- Z boson properties (LEP,SLD)
- W boson mass (LEP+Tevatron)
- Top quark mass (Tevatron)

15

W Boson Mass

World average: M_w =80399 ± 23 MeV Ultimate precision: Tevatron: 15-20 MeV LHC: unclear (5 MeV?)

Top Quark Mass Results

- Many measurements agree
 - CDF and D0
 - Different techniques and decay channels
- Most precise measurement in lepton+jets channel
 - Dominant jet energy scale uncertainty determined within top sample
- Precision: δm_{top}/m_{top}=0.6%!

00000

Prediction from LEP1, SLD, M_W , Γ_W : 178.9 ^{+11.7}_{-8.6} GeV/c²

Implications for the Higgs Boson

Relation: M_W vs m_{top} vs M_H

 $m_{\rm H} = 89^{+35}_{-26} \, {\rm GeV}$

Higgs Production: Tevatron and LHC

dominant: gg -> H, subdominant: HW, HZ, Hqq

Higgs Boson Decay

- Depends on Mass
- M_H<130 GeV/c²:
 - bb dominant
 - WW* and $\tau\tau$ subdominant
 - γγ small but useful
- M_H>130 GeV/c²:
 - WW dominant
 - ZZ cleanest

Tevatron Discovery Channels

M(H)>125 GeV: WW M(H)<125 GeV: WH and ZH

- Higgs causes peak in dijet mass
- Analyses make use of full event correlations to improve separation from background
 - Event Probability Discriminant (e.g. Neural Network,...)

$H \rightarrow WW^{(\star)} \rightarrow I^+I^-vv$

- Higgs mass reconstruction impossible due to two neutrinos in final state
- Make use of spin correlations to suppress WW background:
 - Higgs is scalar: spin=0
 - leptons in H → WW^(*) → I⁺I⁻vv are collinear

Main background: WW production

$\textbf{H} \rightarrow \textbf{WW}^{(*)} \rightarrow \textbf{I}^{+}\textbf{I}^{-} \nu \nu \textbf{ (I=e,}\mu)$

Event selection:

- 2 isolated e/μ :
 - p_T > 15, 10 GeV
- Missing $E_T > 20 \text{ GeV}$
- Veto on
 - Z resonance
 - Energetic jets (against top)

Separate signal from background

- Use discriminant to enhance sensitivity
- Many varieties:
 - "Neural Network", "Boosted Decision Tree", "Likelihood",... (see literature)
- Basically combine many
 variables into one to exploit as
 much information as possible

No Higgs Signal found ⇒Set limits on cross section

Tevatron Higgs Limit

- Combine CDF and DØ analyses from all channels at low and high mass
 - Exclude m_H =158-175 GeV/c² at 95% C.L.
- 25 − m_H=120 GeV/c²: limit/SM ≈ 1.5

LHC Higgs Prospects with 1 fb⁻¹

- ATLAS and CMS can jointly exclude the mass range 140-200 GeV with 1 fb⁻¹
 - Using WW, ZZ and diphoton decay
 - Competitive with Tevatron at ~7 fb⁻¹ at high mass
 - May be better if more sophisticated analyses techniques deployed (like at Tevatron)

What if there is no Higgs?

- In the SM the Higgs boson prevents unitarity violation of WW cross section
- Without the Higgs: $\sigma(pp \rightarrow WW) > \sigma(pp \rightarrow anything)$
 - => illegal!
 - At √s=1.2 TeV!

⇒Something has to be found at the LHC: Higgs boson or something else

Beyond the Standard Model

New Physics beyond the SM

Supersymmetry

- Strong theoretical prejudices for SUSY being true
- However, we need to keep our eyes open

Other theories

- Extra spatial dimensions:
 - "Solve" hierarchy problem by making gravity strong at TeV scale
- Extra gauge groups: Z', W'
 - Occur naturally in GUT scale theories
- Leptoquarks:
 - Would combine naturally the quark and lepton sector
- ????

What's Nice about SUSY?

- Radiative corrections to Higgs acquire SUSY corrections: ---
 - No/little fine-tuning required
- Unification of forces possible
- Dark matter candidate exists:
 - lightest neutral gaugino
- Changes relationship between m_W, m_{top} and m_H:
 - Also consistent with precision measurements of M_W and m_{top}
- SUSY particles must be near EWK scale (~TeV) to actually solve these problems

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - **Sfermions** (squark, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

31

Generic Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and E_T^{miss}
- Strong production
 - Large cross section, depending on mass of gluino and squarks

Missing E_T for multi-jet events

Supersymmetry Parameter Space

LHC SUSY Searches and Reach

Searches in many modes

- 1, 2, 3, 4 jets with 0, 1, 2 leptons
- Specific searches with b-jets
- Completely different SUSY scenarios...

Sensitivity beyond Tevatron with 100 pb⁻¹

Will probe masses of ~800 GeV with 1 fb⁻¹

Higgs in Supersymmetry (MSSM)

g 000

g

 $\overline{)^2}^{\times} \overline{[9 + (1 + \Delta_k)^2]}$

h

g

 $\sigma \times BR_{SUSY} = 2 \times \sigma_{SM} \times \frac{\tan \rho}{(1 + \Delta_{h})}$

 $\tan\beta^2$

Tevatron

- Minimal Supersymmetric Standard Model:
 - 2 Higgs-Fields: Parameter $\tan\beta = \langle H_{u} \rangle / \langle H_{d} \rangle$
 - 5 Higgs bosons: h, H, A, H[±]
- Neutral Higgs Boson:
 - Pseudoscalar A
 - Scalar H, h
 - Lightest Higgs (h) very similar to SM
 - A is degenerate in mass with either h or H
 - Decays always into either two τ 's or two b's

Tevatron

36

MSSM Higgs Boson Search: di-tau signature

- Data agree with SM backgrounds
- Limits on supersymmetric Higgs bosons
 - Exclude tanβ>30-40 for m_A<200 GeV

LHC Prospects for MSSM Higgs

- Sensitivity up to m_A=300 GeV for tanβ=40 with 1 fb⁻¹
- Improves current Tevatron sensitivity

$B_s \rightarrow \mu^+ \mu^-$ Branching Ratio

Events/0.05 GeV Standard Model prediction: 40 BR=(3.6±0.3) x 10⁻⁹ 30 A.J. Buras Phys.Lett.B 566, 115 (2003) 20 Large enhancements e.g. in 10 Supersymmetry possible 0 MSSM 4.5 H^0/A^0 $\sim \tan^6\beta/m_A^4$

J.K. Parry, Nucl. Phys. B 760, 38 (2007)

LHCb will supersede Tevatron with 200 pb⁻¹

Beyond SUSY

- Dielectron and diphoton mass distributions
 - Data agree well with Standard Model spectrum
 - Slight excesses at 450 GeV (D0 $\gamma\gamma)$ and 250 GeV (CDF ee)

Excluding Z' and Graviton

Resonance in diphoton or dielectron mass spectrum predicted in

- Z' models (ee only): Spin 1
- Randall-Sundrum graviton (ee and $\gamma\gamma$): Spin 2

for y,]

Summary

- We will find new particles at the electroweak scale at Tevatron and/ or LHC
 - Either "only" the Higgs-boson
 - Or possibly a lot more
- Hadron colliders probe fundamental forces and particles in earnest:
 - QCD thoroughly being tested:
 - Exp. precision challenges theory
 - Electroweak sector:
 - Indirect : exclude m_H>158 GeV
 - Direct: exclude 158<m_H<175 GeV
 - Searches beyond the Standard Model
 - Many direct searches ongoing probing many theoretical possibilities
 - Flavor measurements probe new physics indirectly
- Great times ahead!
 - This was merely a glimpse of the physics we can do now/soon!

2xCDF Preliminary Projection

43

Backup

Many More Searches

More Supersymmetry Searches

$B_s - \overline{B}_s$ Oscillation Frequency

- CDF Measurement:
 - Prob. of stat. fluctuation: 8x10⁻⁸
 - $\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$
 - $|V_{td}/V_{ts}|=0.2060\pm0.0007 +0.008 -0.006$ (th.)

Single Top Production

- 4.8σ observation of single-top production
- Uses elaborate techniques also needed for Higgs search

Prospects for Tevatron Higgs Search

Analyzed Lumi/Exp. (fb⁻¹ Expected Sensitivity o End of 2011 2.4-5.2 σ m_H (GeV/c²) With Projected Improvements

2xCDF Preliminary Projection

Problems of the Standard Model

- Large fine-tuning required:
 - m_H naturally similar to cut-off Λ
- Accounts only for 17.5^{+2.1}-1.1% of the matter on the Universe
 - No dark matter candidate
- No prediction for
 - fundamental constants, unification of forces, number of generations, mass values and hierarchy of SM particles, anything to do with gravity

Mass Unification in mSUGRA

Common masses at GUT scale: m₀ and m_{1/2}

51

- Evolved via renormalization group equations to lower scales
- Weakly coupling particles (sleptons, charginos, neutralions) are lightest
- Strongly coupled particles (squarks, gluino) are heaviest

Top Mass in tt→(blv)(bqq)

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires $m(t)=m(\overline{t})$
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Precision Measurement of m_{top}

m_{top}=173.0±0.6±1.1 GeV (L=5.6 fb⁻¹)