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The Standard Model and the Questions 
Hadron Colliders can (maybe) answer 

  Is QCD describing the data at 
highest energies? 
–  Are the calculations adequate? 

  What is the origin of electroweak 
symmetry breaking? 
–  Is there a Higgs boson? 

  Is the CKM matrix the only source of 
CP violation? 

  What is the Dark Matter? 
–  Is it produced it at colliders?  

  Are there new dimensions of 
space?  
–  Or e.g. extended gauge sectors, 

leptoquarks,…? 
  Is there anything that no one has 

thought of? 
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Outline 

  Testing Particle Production 
–  Jets, W’s and Z’s, top quarks 

  Electroweak Symmetry 
Breaking 
–  W boson mass 
–  Top quark mass 
–  Higgs boson search 

  Beyond the Standard Model 
–  Supersymmetry  
–  Beyond SUSY 

  Conclusions 



Tevatron and LHC 

  Tevatron: 
–  pp collider operating since 1985, “Run 2” since 2001 
–  √s=1.96 TeV, dataset collected 9 fb-1 

  LHC: 
–  pp collider operating since March 2010 at high energy 
–  √s=7 TeV, dataset collected 6.5 pb-1 
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Production of Particles 
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Luminosity and Cross Sections 
  Single most important quantity 

– Drives our ability to detect new processes 

– Rate of physics processes per unit time directly 
related: 

Luminosity Uncertainty: 6% (Tevatron), 11% (LHC) 
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Physics Cross Sections 

  ∫Ldt=1 fb-1 at LHC competitive with 10 fb-1 at 
Tevatron for high mass processes 

  ∫Ldt=100 pb-1 already interesting in some cases 

Process MX σ(LHC @ 7 TeV) 
σ(Tevatron) 

qq→W  80 GeV 3 
qq→Z’SM 1 TeV 50 
gg→H 120 GeV 20 
qq/gg →tt 2x173 GeV 15 
gg → gg 2x400 GeV 1000 

_

_


_


~
~


_
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Jet Cross Sections 
  Inclusive jets: processes qq, qg, gg 

  Highest ET probes shortest distances 
  Tevatron: rq<10-18 m 

  Tests perturbative QCD at highest 
energies 

  Also sensitive to new physics creating 
dijet resonance 
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Jet Cross Sections 

  Cross section measured over 7 orders of magnitude 
  Data well described by Standard Model prediction up to 

masses of 1.3 TeV 



  Selection: 
–  Z: 

•  Two leptons pT>20 GeV 
–  electron, muon, tau 

–  W: 
•  One lepton pT>20 GeV 
•  Large imbalance in transverse 

momentum 
–  Missing ET>20 GeV 
–  Signature of undetected 

particle (neutrino) 
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W and Z Bosons 
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W and Z production 
  Tevatron  

–  Data precision: 6% (lumi) , 2% (syst.+stat.) 
–  Theory precision (NNLO QCD): 2% 

  LHC 
–  Initial results also agree with theory 

May be able to use this process to normalize luminosity 
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Different sensitivity and challenges in each channel 

Lepton+jets is has best sensitivity  

  Mainly produced in pairs via the strong interaction 

  Decay via the electroweak interactions 
 Final state is characterized by the decay of the W boson 

    

Top Quark Production and Decay 

Br(t →Wb) ~ 100% 
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The Top Cross Section 
  Basic selection: 

–  1 high pT electron or muon 
–  Large missing ET 
–  At least 3 jets 

Number of b-tagged jets


•  Good agreement between all measurements (precision 6%) 
and between data and theory 



14


Electroweak Symmetry 
Breaking 
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The Electroweak Precision Data 
  Precision measurements of  

–  muon decay constant and α 
–  Z boson properties (LEP,SLD) 
–  W boson mass (LEP+Tevatron) 
–  Top quark mass (Tevatron) 
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W Boson Mass 

World average:

 MW=80399 ± 23 MeV


Ultimate precision:

Tevatron: 15-20 MeV

LHC: unclear (5 MeV?)
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   Top Quark Mass Results 

mtop=173.3± 1.1 GeV/c2  

Prediction from LEP1, SLD, MW,ΓW: 178.9 +11.7
-8.6 GeV/c2 

  Many measurements agree 
–  CDF and D0 
–  Different techniques and 

decay channels 
  Most precise measurement in 

lepton+jets channel 
–  Dominant jet energy scale 

uncertainty determined within top 
sample 

  Precision: δmtop/mtop=0.6%! 
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mH =89+35 -26 GeV 

Standard Model still works! 
Indirect constraints: 
mH<158 GeV @95%CL 

LEPEWWG July 2010 
Implications for the Higgs Boson 

Relation: MW vs mtop vs MH
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Higgs Production: Tevatron and LHC 

dominant: gg→ H, subdominant: HW, HZ, Hqq!

LHC Tevatron 

σ
(p

b)
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Higgs Boson Decay 

  Depends on Mass 
  MH<130 GeV/c2: 

–  bb dominant 
–  WW* and ττ subdominant 
–  γγ small but useful 

  MH>130 GeV/c2: 
–  WW dominant 
–  ZZ cleanest 

B
R

 
bb 

γγ 

WW 
ZZ 

LEP excluded 

ττ 

_




Tevatron Discovery Channels 
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M(H)>125 GeV: WW 

M(H)<125 GeV: WH and ZH
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W/Z+Higgs with H→bb  

  WH→lνbb, ZH →llbb, ZH →ννbb 
  Higgs causes peak in dijet mass 
  Analyses make use of full event correlations to improve 

separation from background 
–  Event Probability Discriminant (e.g. Neural Network,…) 
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• Higgs mass reconstruction impossible 
due to two neutrinos in final state 

• Make use of spin correlations to 
suppress WW background: 

•  Higgs is scalar: spin=0 
•  leptons in H → WW(*) → l+l-νν are 

collinear 
• Main background: WW production 

H → WW(*) → l+l-νν  
_


10x Higgs Signal
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  Event selection: 
–  2 isolated e/µ : 

•  pT > 15, 10 GeV 
–  Missing ET >20 GeV 
–  Veto on 

•  Z resonance 
•  Energetic jets (against top) 

  Separate signal from background 
–  Use discriminant to enhance 

sensitivity 
–  Many varieties:  

•  “Neural Network”, “Boosted Decision 
Tree”, “Likelihood”,… (see literature) 

–  Basically combine many 
variables into one to exploit as 
much information as possible 

New result! 
H→ WW(*) → l+l-νν (l=e,µ)


No Higgs Signal found 
⇒ Set limits on cross section 
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Tevatron Higgs Limit 

  Combine CDF and DØ analyses from all channels at 
low and high mass 
–  Exclude mH=158-175 GeV/c2 at 95% C.L. 
–  mH=120 GeV/c2: limit/SM ≈ 1.5 



LHC Higgs Prospects with 1 fb-1 

  ATLAS and CMS can jointly exclude the mass range 140-200 
GeV with 1 fb-1 

–  Using WW, ZZ and diphoton decay 
–  Competitive with Tevatron at ~7 fb-1 at high mass 
–  May be better if more sophisticated analyses techniques 

deployed (like at Tevatron)  26
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What if there is no Higgs? 

  In the SM the Higgs boson prevents unitarity violation of WW 
cross section 

  Without the Higgs: σ(pp→WW) > σ(pp → anything) 
•  => illegal! 
•  At √s=1.2 TeV! 

⇒ Something has to be found at the LHC: 
 Higgs boson or something else 
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Beyond the Standard Model 
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New Physics beyond the SM 

  Supersymmetry 
–  Strong theoretical prejudices for SUSY being true 
–  However, we need to keep our eyes open  

  Other theories 
–  Extra spatial dimensions:  

•  “Solve” hierarchy problem by making gravity strong at TeV scale 

–  Extra gauge groups: Z’, W’ 
•  Occur naturally in GUT scale theories 

–  Leptoquarks: 
•  Would combine naturally the quark and lepton sector 

–  ???? 
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What’s Nice about SUSY? 
  Radiative corrections to Higgs 

acquire SUSY corrections: 
–  No/little fine-tuning required 

  Unification of forces possible 
  Dark matter candidate exists: 

–  lightest neutral gaugino 
  Changes relationship between 

mW, mtop and mH: 
–  Also consistent with precision 

measurements of MW and mtop 

  SUSY particles must be near 
EWK scale (~TeV) to actually 
solve these problems 

with SUSY


S
M


without SUSY


with SUSY


Energy in GeV
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Supersymmetry (SUSY) 

  SM particles have supersymmetric partners: 
–  Differ by 1/2 unit in spin 

•  Sfermions (squark, selectron, smuon, ...): spin 0 
•  gauginos (chargino, neutralino, gluino,…): spin 1/2 

  No SUSY particles found as yet: 
–  SUSY must be broken: breaking mechanism determines phenomenology 
–  More than 100 parameters even in “minimal” models! 

γ


G
~ G




32


Generic Squarks and Gluinos 
  Squark and Gluino production: 

–  Signature: jets and ET
miss 

  Strong production 
–  Large cross section, depending 

on mass of gluino and squarks 
Missing Transverse  

 Energy 

Missing Transverse  
 Energy 

Jets 

Phys.Rev.D59:074024,1999  

)0.2(~~ TeVsgqpp −=→

)(2/)( ~~ GeVMM gq +

103 

1 σ
 (p

b)
 

10-3 

10-6 

10-9 

300 500 700 

M(gluino) Events per fb-1 

Tevatron          LHC 
300 1000 250000 
400 10 50000 
1000 0 100 
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Missing ET for multi-jet events 
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Supersymmetry Parameter Space 

M(g)>308 GeV and M(q)>379 GeV
~
 ~
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LHC SUSY Searches and Reach 

  Searches in many modes 
–  1, 2, 3, 4 jets with 0, 1, 2 leptons 
–  Specific searches with b-jets 
–  Completely different SUSY scenarios… 

  Sensitivity beyond Tevatron with 100 pb-1  

–  Will probe masses of ~800 GeV with 1 fb-1 

l q l 

qL ~ 
l ~ χ0

2

~ χ0

1
~ 

M(g)=400 GeV
~
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  Minimal Supersymmetric Standard Model: 
–  2 Higgs-Fields: Parameter tanβ=<Hu>/<Hd> 
–  5 Higgs bosons: h, H, A, H± 

  Neutral Higgs Boson: 
–  Pseudoscalar A 
–  Scalar H, h 

•  Lightest Higgs (h) very similar to SM 
•  A is degenerate in mass with either h or H 

–  Decays always into either two τ’s or two b’s 

Higgs in Supersymmetry (MSSM) 

• C. Balazs, J.L.Diaz-Cruz, H.J.He, T.Tait and C.P. Yuan, PRD 59, 055016 (1999)
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MSSM Higgs Boson Search: di-tau signature 

  Data agree with SM 
backgrounds 

  Limits on supersymmetric 
Higgs bosons 
–  Exclude tanβ>30-40 for 

mA<200 GeV 

Ev
en

ts/
10

 G
eV



CDF


mvis=m(τ,e/µ,ET
miss)




LHC Prospects for MSSM Higgs 

  Sensitivity up to mA=300 GeV for tanβ=40 with 1 fb-1  
  Improves current Tevatron sensitivity 38
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Bs→µ+µ- Branching Ratio 
  Standard Model prediction: 

BR=(3.6±0.3) x 10-9 
A.J. Buras Phys.Lett.B 566, 115 (2003) 

  Large enhancements e.g. in 
Supersymmetry possible 

CDF  
L=3.7 fb-1 

DØ  
L=6.1 fb-1 

Limit at 
95%CL 

<4.3 x 10-8 <5.1 x 10-8 

LHCb will supersede Tevatron with 200 pb-1 

~ tan6β/mA
4


excluded


SM


J.K. Parry, Nucl. Phys. B 760, 38 (2007)


Signal x 100 
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Beyond SUSY 
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ee and γγ Mass Spectra 

  Dielectron and diphoton mass distributions 
–  Data agree well with Standard Model spectrum 
–  Slight excesses at 450 GeV (D0 γγ) and 250 GeV (CDF ee) 

ee
ee

γγ
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    Excluding Z’ and Graviton 
  Resonance in diphoton or dielectron mass spectrum predicted in  

–  Z’ models (ee only): Spin 1 
–  Randall-Sundrum graviton (ee and γγ): Spin 2 

MG>1050 GeV for k/MPl=0.1


MZ’>923 GeV for SM-like Z’
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Summary 
  We will find new particles at the 

electroweak scale at Tevatron and/
or LHC 
–  Either “only” the Higgs-boson 
–  Or possibly a lot more 

  Hadron colliders probe fundamental 
forces and particles in earnest:  
  QCD thoroughly being tested:  

  Exp. precision challenges theory 
  Electroweak sector: 

  Indirect : exclude mH>158 GeV  
  Direct: exclude 158<mH<175 GeV 

  Searches beyond the Standard Model 
  Many direct searches ongoing probing 

many theoretical possibilities 
  Flavor measurements probe new 

physics indirectly  
  Great times ahead! 

–  This was merely a glimpse of the 
physics we can do now/soon! 



Backup 
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Many More Searches 

W´
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More Supersymmetry Searches 
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Bs -Bs Oscillation Frequency 
  CDF Measurement: 

–  Prob. of stat. fluctuation: 8x10-8 
–  Δms=17.77 ± 0.10 ±0.07 ps-1 
–  |Vtd/Vts|=0.2060±0.0007 +0.008 (th.) -0.006 

CDF
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B0
s


B0
s


Vts


( )

( )tmAeP

tmAeP

s
t

B
B
mix

s
t

B
B
unmix

sB

s

s

sB

s

s

Δ−Γ=

Δ+Γ=

Γ−

Γ−

cos1
2
1

cos1
2
1

H. G. Moser, A. Roussarie,  
NIM A384 (1997) 

  DØ: 17<Δms<21 ps-1 

W
 W


CP-odd:  BH=pB + qB

CP-even: BL=pB - qB

with |p|2+|q|2=1


_

_
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Single Top Production 

  4.8σ observation of single-top production 
  Uses elaborate techniques also needed for Higgs search 

Vtb=0.91 ±0.08


σ ∝ Vtb
2




Prospects for Tevatron Higgs Search 
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End of 2011

2.4-5.2 σ 
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  Large fine-tuning required: 
–  mH naturally similar to cut-off Λ 

  Accounts only for 17.5+2.1
-1.1% of the 

matter on the Universe 
–  No dark matter candidate 

  No prediction for 
–  fundamental constants, unification of 

forces, number of generations, mass 
values and hierarchy of SM particles, 
anything to do with gravity  

M. Schmaltz, ICHEP 02


Problems of the Standard Model 
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Mass Unification in mSUGRA 

  Common masses at GUT scale: m0 and m1/2  
–  Evolved via renormalization group equations to lower scales 
–  Weakly coupling particles (sleptons, charginos, neutralions) are lightest 
–  Strongly coupled particles (squarks, gluino) are heaviest 

ewk scale
 GUT scale
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Top Mass in tt→(blν)(bqq) 
  4 jets, 1 lepton and missing ET 

–  Which jet belongs to what? 
–  Combinatorics! 

  B-tagging helps: 
–  2 b-tags =>2 combinations 
–  1 b-tag   => 6 combinations 
–  0 b-tags =>12 combinations 

  Two Strategies: 
–  Template method: 

•  Uses “best” combination 
•  Chi2 fit requires m(t)=m(t) 

–  Matrix Element method: 
•  Uses all combinations 
•  Assign probability depending on 

kinematic consistency with top 
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Precision Measurement of mtop 

mtop=173.0±0.6±1.1 GeV (L=5.6 fb-1) 

mtop=173.7±0.8±1.6 GeV (L=2.6 fb-1) 


