Jet Reconstruction and Particle Flow

Philipp Schieferdecker (KIT)

Outline

- What are Jets?
- Formation of Jets
- What is a Jet Algorithms?
- Theoretical and Experimental Jet Algorithm Requirements
- Cone Algorithms
- Sequential Clustering Algorithms
- Making everybody happy: Anti-kT
- Jet Areas & Pile-Up Subtraction
- Calorimeter Towers, Topological Clusters & Particle Flow
- Jet Performance in first CMS Collision Data

 Due to the special nature of the strong force ("confinement"), quarks & gluons (partons) can not be observed directly

- Due to the special nature of the strong force ("confinement"), quarks & gluons (partons) can not be observed directly
- Instead we observe collimated bunches of stable colorless hadrons, originating from partons after fragmentation and hadronization: Jets!

- Due to the special nature of the strong force ("confinement"), quarks & gluons (partons) can not be observed directly
- Instead we observe collimated bunches of stable colorless hadrons, originating from partons after fragmentation and hadronization: Jets!
- Jet Finding is the **approximate** attempt to reverse-engineer the quantum mechanical processes of fragmentation and hadronization

- Due to the special nature of the strong force ("confinement"), quarks & gluons (partons) can not be observed directly
- Instead we observe collimated bunches of stable colorless hadrons, originating from partons after fragmentation and hadronization: Jets!
- Jet Finding is the **approximate** attempt to reverse-engineer the quantum mechanical processes of fragmentation and hadronization
- Fundamentally ambigous procedure!

- Due to the special nature of the strong force ("confinement"), quarks & gluons (partons) can not be observed directly
- Instead we observe collimated bunches of stable colorless hadrons, originating from partons after fragmentation and hadronization: Jets!
- Jet Finding is the **approximate** attempt to reverse-engineer the quantum mechanical processes of fragmentation and hadronization
- Fundamentally **ambigous** procedure!
- Jets are the observable objects to relate experimental **observations** to theory **predictions** formulated in terms of quarks and gluons

Fragmentation

perturbative gluon emissions

"Parton Shower"

Fragmentation

perturbative gluon emissions

"Parton Shower"

German LHC Physics School 2010 - Jet Day September 29th 2010

Philipp Schieferdecker (KIT)

Underlying Event & Pile-Up

Underlying Event (UE)

- Multiple low-pT interactions which occur between the two hadron remnants in a pp-collisions
- Hadronisation and UE can not be unambigously separated, but affect jets differently
- Underlying Event activity at LHC ~15GeV per unit rapidity
- MC generators simulate UE based on phenomenological models, which are tuned based on observations in real collisions

Pile-Up Interactions (PU)

- Additional minbias collisons overlayed with primary interaction
- In-Time PU: PU collisisons occur in same bunch crossing
- Out-of-Time PU: PU collisions occur in neighbouring bunches
- Depends on instantanous luminosity and bunch-spacing
- Easily 100GeV per unit rapidity at high-lumi / low bunch-spacing

Jet Algorithms

A <u>Jet Algorithm</u> is a well-defined procedure which transforms a set of input particles {p_i} into a set of jets {j_k}

{**p**_i} → {**j**_k}

Particles:

four-vectors from different stages of the formation of jets are transformed into corresponding jet types:

- partons -> parton jets
- stable particles -> generator jets
- calorimeter towers
 PF particles
 topological clusters -> reco jets
 tracks

Jet Algorithm Parameters:

- Typically at least "Radius" R
- Additional Parameters e.g. for Split/Merge procedures

Recombination Scheme:

- Defines how the jet four-momentum is calculated from its constituent particles
- E-Scheme: jet four-momentum defined to be four-vector sum of constituent particles

Theoretical & Experimental Jet Algorithms Requirements

The projections of an event at different stages of the jet formation should be coherent with each other

(Reminder: "Jets are the observable objects to relate experimental observations to theory predictions formulated in terms of quarks and gluons")

The projections of an event at different stages of the jet formation should be coherent with each other

(Reminder: "Jets are the observable objects to relate experimental observations to theory predictions formulated in terms of quarks and gluons")

The projections of an event at different stages of the jet formation should be coherent with each other

(Reminder: "Jets are the observable objects to relate experimental observations to theory predictions formulated in terms of quarks and gluons")

German LHC Physics School 2010 - Jet Day September 29th 2010

Philipp Schieferdecker (KIT)

The projections of an event at different stages of the jet formation should be coherent with each other

(Reminder: "Jets are the observable objects to relate experimental observations to theory predictions formulated in terms of quarks and gluons")

German LHC Physics School 2010 - Jet Day September 29th 2010

Philipp Schieferdecker (KIT)

Infrafred- and Collinear-Safety

arXiv:0704.0292

"Infrared unsafety is a serious issue, not just because it makes impossible to carry out meaningful (finite) perturbative calcuations, but also because it breaks the whole relation betweeb the (Born or low-order) partonic structure of the event and the jets that one observes, and it is precisly this relation that a jet algorithm is supposed to codify: it makes no sense for the structure of multihundred GeV jets to change radically just because hadronisation, the underlying event or pileup threw a 1 GeV particle in between them."

Experimental Considerations

Good Jet Energy Resolution

- Resiliancy to Detector Effects, like
 - input particle (e.g. calorimeter tower) thresholds
 - bending of charged particles in the magnetic field
 - detector noise

These effects are very related to and partially addressed by IR&C-Safety!

Good computational performance

- Sequential clustering algorithms were originally disfavored at hadron colliders because of poor computational performance for large numbers of particles (N³)
- This concern was once and for all addressed by the fastjet [1,2] package
- Both ATLAS & CMS rely on fastjet for (almost) all their jet clustering needs

[1] <u>http://www.lpthe.jussieu.fr/~salam/fastjet/</u>

[2] <u>http://arxiv.org/abs/hep-ph/0512210</u>

Two classes of jet algorithms:

(1) Cone Algorithms(2) Sequential Clustering Algorithms

• "top-down" approach

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of **radius** $\mathbf{R} = \int \Delta y^2 + \Delta \phi^2$ around the seed direction

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of radius $R = \int \Delta y^2 + \Delta \phi^2$ around the seed direction
- Iterate until "stable cone" is found: fourvector sum direction of contained particles corresponds to cone center

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of radius $R = \int \Delta y^2 + \Delta \phi^2$ around the seed direction
- Iterate until "stable cone" is found: fourvector sum direction of contained particles corresponds to cone center

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of radius $R = \int \Delta y^2 + \Delta \phi^2$ around the seed direction
- Iterate until "stable cone" is found: fourvector sum direction of contained particles corresponds to cone center
- Different Strategies to handle overlaps:

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of radius $R = \int \Delta y^2 + \Delta \phi^2$ around the seed direction
- Iterate until "stable cone" is found: fourvector sum direction of contained particles corresponds to cone center
- Different Strategies to handle overlaps:
 - "cooky cutter": particles belonging to reconstructed jet removed (CMS IterativeCone)

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of radius $R = \int \Delta y^2 + \Delta \phi^2$ around the seed direction
- Iterate until "stable cone" is found: fourvector sum direction of contained particles corresponds to cone center
- Different Strategies to handle overlaps:
 - "cooky cutter": particles belonging to reconstructed jet removed (CMS IterativeCone)

- "top-down" approach
- Typically Seeded: consider only a subset of particles (above some pT threshold) as seeds
- Sum up all particle four-vectors contained in a cone of **radius** $\mathbf{R} = \int \Delta y^2 + \Delta \phi^2$ around the seed direction
- Iterate until "stable cone" is found: fourvector sum direction of contained particles corresponds to cone center
- Different Strategies to handle overlaps:
 - "cooky cutter": particles belonging to reconstructed jet removed (CMS IterativeCone)
 - "splitamerge": particles are allowed to appear in several jets, split & merge procedure to determine afterwards which particle belongs to which jet or whether two jets are to be merged (Midpoint, ATLAS)

SISCone

- "Seedless Infrared-Safe Cone" Algorithms
- Exact seedless cone algorithm which provably finds all stable cones
- Only existing **IR&C-safe** cone algorithm!
- Employs Split&Merge to resolve overlaps
- Reasonable computational performance
 - previous seedless exact cone algorithm formulation: $\sim N2^{N}$ (10¹⁷ years for N=100!!)
 - SISCone: N²ln(N)
 - still: removed from CMS standard reco-chain due to excessive processing time

<u>2D Simplification</u>: Moving (a) initial circular enclosure in a random direction until some **particle** (b) touches the circle, then pivot the circle around that edge point until (c) a second point touches the edge. (d) all circles defined by pairs of edge points are all stable cones

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

- $d_{iB} = k_{Ti}^{2p}$

- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

- $d_{iB} = k_{Ti}^{2p}$
- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

-
$$d_{iB} = k_{Ti}^{2p}$$

- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

-
$$d_{iB} = k_{Ti}^{2p}$$

- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

-
$$d_{iB} = k_{Ti}^{2p}$$

- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

-
$$d_{iB} = k_{Ti}^{2p}$$

- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

- d_{iB} = k_{Ti}^{-P}
 Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

- "bottom-up" approach
- Based on the following distance measures:

-
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}}{R}$$

- $d_{iB} = k_{Ti}^{2p}$

- Find smallest of all d_{ij} and d_{iB}
- If d_{ij}: recombine particles i and j
- If d_{iB}: declare particle i a jet
- Iterate until no particles are left
- p=1: kT-Algorithm
 - attempt to reverse QCD branching
- "Radius" Parameter R: any two jets will be separated at least by $\Delta R > R$
- Sequential clustering algorithms are by construction **IRC-safe** for al finite p!

Making Everybody Happy: Anti-k_T

- Theorists are keen on IR&C-Safety (as should experimentalists!)
- Experimentalists do not like irregular shape of e.g. kT jets, prefer computable geometrical structure (e.g. for acceptance corrections)
- Both are likely wary of unnecessary complications (e.g. split&merge)

Making Everybody Happy: Anti-k_T

- Theorists are keen on IR&C-Safety (as should experimentalists!)
- Experimentalists do not like irregular shape of e.g. kT jets, prefer computable geometrical structure (e.g. for acceptance corrections)
- Both are likely wary of unnecessary complications (e.g. split&merge)

Solution: Anti-kT [1] Algorithm!

- sequential clustering (p=-1), IR&C-safe
- simple, one parameter R
- produces cone-shaped jets of radius R
- clusters high-pT deposits first
- fast as in fastjet
- currently first choice at both ATLAS&CMS

[1] <u>http://arxiv.org/abs/0802.1189</u>

Jet Areas

- Jet Area definition [1] suitable for all <u>IR&C-safe</u> jet definitions
 - i.e. those where hard jets are not modified by the addition of extra soft particles
 - geometrical jet shape irrelevant!

Jet Areas

- Jet Area definition [1] suitable for all <u>IR&C-safe</u> jet definitions
 - i.e. those where hard jets are not modified by the addition of extra soft particles
 - geometrical jet shape irrelevant!
- Prescription: Add infinitely soft particles ("ghosts") and identify the region in y-φ where those ghosts are clustered with a given jet.
 - The extension of that region gives a measure of the dimension-less (active) jet area
 - As ~10.000 ghost particles are typically needed to cover the relevant y-φ-space, exquisit computational performance is in reality required (fastjet: ~0.6s for N~10000)

[1] <u>http://arxiv.org/abs/0802.1188v2</u>

Pile-Up Subtraction

- In events containting Pile-Up, suitable algorithms (e.g. kT) yield a large number of soft jets ("PU jets")
- In the limit where the contamination from PU is uniform and dense, each such PU jet will have the property that pT/A is equal to the event PU density per unit area, ρ
- In reality ρ can be measured eventby-event by e.g. fitting pT/A as a function of y [1]
- Given ρ and each jet's area A, the PU contamination of each jet can be calculated as ρA and subtracted, event-by-event

Pile-Up Subtraction

- In events containting Pile-Up, suitable algorithms (e.g. kT) yield a large number of soft jets ("PU jets")
- In the limit where the contamination from PU is uniform and dense, each such PU jet will have the property that pT/A is equal to the event PU density per unit area, ρ
- In reality ρ can be measured eventby-event by e.g. fitting pT/A as a function of y [1]
- Given ρ and each jet's area A, the PU contamination of each jet can be calculated as ρA and subtracted, event-by-event

[1] <u>http://arxiv.org/abs/0707.1378v2</u>

"Particle" Reconstruction

Calorimeter Towers
Topological Clusters
Particle Flow

Calorimeter Towers at CMS

- Calorimeter towers consist of one HCAL tower and 5x5 ECAL crystals
- Calorimeter tower four-vectors constructed by
 - considering deposits above threshold
 - summing HCAL and ECAL deposits
 - adjusting the direction for
 - \star primary vertex
 - \star optimized common shower depth
 - \star profile of the ECAL depoistions
 - forcing the mass to be 0
- Drawbacks
 - CMS Calorimeter System non-linear and non-compensating
 - High magnetic field bends low pT particles significantly (>1GeV to reach calo-surface)

Topological Clusters at ATLAS

- reconstruct three-dimensional "energy blobs" representing the showers developing for each particle entering the calorimeter
- attempt to resolve shower overlaps works best for 1.5<|eta|<3.
- Noise suppression scheme part of the clustering algorithm via cell signal significance cuts
- Cluster characteristics used to classify as electromagnetic or hadronic, corresponding cluster calibration derived from single-particle simulation

Particle Flow at CMS

- Exploit CMS strongest features to reconstruct (particles then) jets!
 - High-resolution tracker & muon system (~65%)
 - High-granularity (space & time) and high-resolution ECAL ($\sim 25\%$)
 - Minimize reliance on HCAL (~10%)

Goal: <u>Reconstruct</u>, <u>classify</u> & <u>calibrate</u> all individual stable particles in the event, **optimally combining the** information from all CMS subsystems

- Distinguish the following five particle types: Photons, Neutral Hadrons, Charged Hadrons, Electrons & Muons
- Improved jet (&MET!) reconstruction from PF particle candidates
- Note fundamental difference to approaches where jets are first reconstructed from calorimeter deposits, then corrected for matched tracks based on expected calo deposits of those tracks! (E.g. Jet-Plus-Track @CMS)

Reconstruct all stable particles, making use of all CMS sub-detectors.

Reconstruct all stable particles, making use of all CMS sub-detectors.

1.Get tracks linked to a single ECAL cluster:

→identify and create electrons

Reconstruct all stable particles, making use of all CMS sub-detectors.

- 1.Get tracks linked to a single ECAL cluster:
 - →identify and create electrons
- 2.If track/clusters compatible with muon chamber hits →create a muon else
 - →create a **charged hadron**

Reconstruct all stable particles, making use of all CMS sub-detectors.

- 1.Get tracks linked to a single ECAL cluster:
 - →identify and create electrons
- 2.If track/clusters compatible with muon chamber hits →create a muon else
 - →create a charged hadron
- 3.For each HCAL cluster get all linked tracks and all ECAL clusters linked to tracks. Compute $E_{calo} = E_{HCAL} + E_{ECAL}$
 - if (E_{calo} compatible with $\sum p_{tracks}$) create a charged hadron for each track
 - if ($E_{calo} > \sum p_{tracks}$) create photons and/or neutral hadrons to account for missing E_{calo}

Five Particle Types

Reconstruct all stable particles, making use of all CMS sub-detectors.

- 1.Get tracks linked to a single ECAL cluster:
 - →identify and create electrons
- 2.If track/clusters compatible with muon chamber hits →create a muon else
 - →create a charged hadron
- 3.For each HCAL cluster get all linked tracks and all ECAL clusters linked to tracks. Compute $E_{calo} = E_{HCAL} + E_{ECAL}$
 - if (E_{calo} compatible with $\sum p_{tracks}$) create a charged hadron for each track
 - if ($E_{calo} > \sum p_{tracks}$) create photons and/or neutral hadrons to account for missing E_{calo}
- 4.For all remaining ECAL (HCAL) clusters not linked to tracks, create a photon (neutral hadron)

Five Particle Types

2

PFJet Performance

large uniform response

improved resolution

Jets in first 7 TeV collisions at ATLAS & CMS

Jet Performance in 7 TeV data

PFJet Composition in 7 TeV data

PFJet Composition (mean)

Summary

- Jets are the observable objects to relate experimental observations to theory predictions formulated in terms of quarks and gluons
- we observe collimated bunches of stable colorless hadrons, originating from partons after *fragmentation* and *hadronization*: clustering partons & hadrons into jets is supposed to yield two *projections* we can relate to each other
- Among all cone and sequential-clustering algorithms, the Anti-kT algorithm has emerged as the favorite compromise among experimentalists & theorists
 - But is there a physics case for collaborations to maintain a variety of jet algorithms and paramter choices for different final states?
- ATLAS (topological clusters) and CMS (Particle Flow) have both devised advanced strategies to reconstruct & calibrate input particles to jet clustering
- Given the complexity of jet reconstruction, their *good performance* in first 7 TeV collision data events at both experiments is *amazing*!