

# Measurements of Electroweak Physics at the LHC

Roger Wolf

# Triumphs of EWK Physics...

300



We will call everything electroweak, which has to do with the exchange of a W/Z boson:

- W/Z bosons were first discovered first at CERN UA1/UA2 Collaboration (Phys. Lett. B122 1983) [W→ev] UA1 Collaboration (Phys. Lett. B126 1983) [Z→ee] UA2 Collaboration (Phys. Lett. B129 1983) [Z→ee]
- And then measured with tremendous precision!

M(Z)=91.1876±0.0023 GeV (PDG 2008) M(W)=80.399 ±0.023 GeV (Tevatron cmb 2010)  $cos(θ_w)=0.89$  (corresponding to  $θ_w \sim 27^\circ$ )

• Still today LEP holds the record in the precision of the Z mass and many important measurements!

### ... in Precision Measurements

110



We will call everything electroweak, which has to do with the exchange of a W/Z boson:

> W/Z bosons were first discovered first at CERN UA1/UA2 Collaboration (Phys. Lett. B122 1983)  $[W \rightarrow ev]$ UA1 Collaboration (Phys. Lett. B126 1983) [Z→ee] UA2 Collaboration (Phys. Lett. B129 1983) [Z→ee]

And then measured with tremendous precision!

 $M(Z) = 91.1876 \pm 0.0023 \text{ GeV} (PDG 2008)$ M(W)=80.399 ±0.023 GeV (Tevatron cmb 2010)  $\cos(\theta_{\rm w})=0.89$  (corresponding to  $\theta_{\rm w}\sim 27^{\circ}$ )

But Tevatron took over for the W mass (precision measurement at a hadron collider)!

### ... and in Fundamental Structures

# Propagator structure of the coupling:



#### V-A coupling:

#### • W<sup>+/-</sup> couples ONLY left handed (anti-)leptons



### EWK Physics at the LHC

EWK measurements are a strong pillar of the SM!

Should we still do EWK measurements at the LHC (still anything to learn)?

#### Final judge on the fate of the SM:

- Masses of the W/Z lead to the need of electroweak symmetry breaking!
- Three heaviest objects of the SM set the scale and rule the mechanisms of EWK symmetry breaking (→ W, Z, Top).
- Even if we don't find a Higgs elastic WW scattering will open the door towards NP.

#### Standard candle/Master Tool:

- Theoretically well known/predictable.
- Important background.
- Measurements relative to Z cross section.
- Input to PDFs and luminosity estimates.
- Valuable tool Z→I+I-.

#### This will be and remain an important physics sector at the LHC!

### Most Obvious Measurements

#### What will be the most obvious EWK measurements at the LHC?

- Inclusive production cross section (in a so far unrevealed kinematic regime).
- Charge asymmetry (key to PDF measurements)



n

50

100

150

Jet Transverse Energy (E<sup>min</sup>) [GeV]

200

0

# Outline

#### We will discuss in the following:

- Inclusive production cross section (in a so far unrevealed kinematic regime).
  - CMS PAS EWK-10-002 (200nb<sup>-1</sup>)
  - ATLAS CONF 2010-051 (17nb<sup>-1</sup>)
- Discuss both  $Z \rightarrow II$  and  $W \rightarrow Iv$ .
- $\bullet$  Mostly concentrate on CMS when discussing the  $\mu$  and on ATLAS when discussing the e channel.
- Hadronic channel or  $\boldsymbol{\tau}$  are not discussed.
- Small review of the objects used the event selection.
- Signal extraction methods and background estimation.
- Systematics and results.

### **Event Signature and Backgrounds**



- Well isolated lepton (red flag).
- Missing transverse energy (MET).



- Two well isolated leptons!
- Opposite charge, same flavor.
- No missing transverse energy (MET).

#### Major Backgrounds:

- QCD (Q-decays, mis-tagged hadrons, conversions).
- Drell-Yan (for Z→ll).
- $Z \rightarrow I(I)$  (one lepton out of acceptance for  $W \rightarrow I_V$ ).
- Z→ττ.



8

# **Object Reconstruction: Muons**



• Tracker only:

Si tracks + MIP signature in calorimeters + a hit in the first muon chamber (inner $\rightarrow$ out).

• Muon System only:

Reconstructed track segments in muon chambers.

• Combined Tracker & Muon System: Separate reconstruction and re-fit (outer→inner).



# **Object Reconstruction: Electrons**



#### LAr(EM):

- Three layers of lead in LAr.
- 173k cells.
- $|\eta|$  < 3.9 (including LAr fwd).

#### **Reconstruction:**

- Seeded by cluster with  $E_{T}$ >2.5 GeV (in second second layer of LAr, sliding window).
- Linked to closest tracks with  $p_{\tau}$ >0.5 GeV.
- Total  $E_{\tau}$  is taken from calorimeter.

#### Electron Categories (barrel):

- Loose: shower shapes, leakage in HCAL.  $(\epsilon \sim 94\%, E_{\tau}(e) > 20 \text{ GeV} \text{Rej 1100}).$
- Medium: more shower shapes, track quality, ( $\epsilon \sim 90\%$ , E<sub>T</sub>(e)>20 GeV – Rej 6800).
- Tight: e/p, signal in TRT, conversion supp. ( $\epsilon \sim 70\%$ , E<sub>T</sub>(e)>20 GeV – Rej 9200).

# Missing Transverse Energy Reconstruction

#### What is missing transverse energy?

Theory

The undetected energy that leaves with v or other weakly interacting particles.

#### **Praxis**

The negative vectorial sum of all energy measured in the detector.



- Need full  $4\pi$  coverage (ATLAS  $|\eta| < 4$ , CMS  $|\eta| < 5$ ).
- Good energy resolution in calorimeter.
- Good energy calibration of the calorimeters.
- Easily affected by instrumental noise.
- High  $p_{_{\rm T}}$  muons leave only MIP signature in calorimeters.
- Some times  ${\rm H}_{_{\rm T}}$  is used instead of MET (only energy in jets is summed).

#### Missing Transverse Momentum Performance



### Missing Transverse Momentum Performance



#### **Example CMS:**

- Three types of MET (calo, track corrected & based on particle flow candidates)
- MET corrected for jet energy calibration and muons.





# Event Selection ( $Z \rightarrow \mu \mu$ )



#### Muon Quality:

- Trigger: HLT  $\mu$  p<sub>T</sub>>9 GeV | $\eta$ |<2.1 (prescales 1).
- Combined muon with  $\chi^2 < 10$ .
- N<sub>Hits</sub>>10 in Si tracker (incl. Pixel) and muon system (>1 station).
- Transverse impact parameter wrt beamspot  $d_0 < 2mm$ .

#### **Muon Selection:**

- $\bullet$  2 $\mu$  (opposite charge, one with slightly looser quality)
- $p_T(\mu)$ >20 GeV,  $|\eta|$ <2.1, 60 GeV<m<sub>µµ</sub><120 GeV
- $I=\Sigma p_{T}(track) < 3 \text{ GeV}$
- This results in a basically background free sample.
- Counting experiment (Cut & Count).

### Z→µµ Peak



• 77 events in 200 nb<sup>-1</sup> ( $\epsilon_{MC}$ =47.6±0.2(stat.)%,  $\epsilon$ (trigger)=92±3%).

• Expected background fraction: 0.3% (QCD, ttbar,  $Z \rightarrow \tau \tau$ ).

# Signal efficiency

- Determined from the events themselves (Tag and Probe methods cf. Tutorials).
- On relaxed selection due to statistics.

Probe:

 $\boldsymbol{\mu}$  with some loose quality criteria.

Tag:

- How often does probe fulfill a test requirement?
- Apply efficiency from MC if consistent within stats.
- Apply correction factor in case of deviations (C=0.98).

• These efficiencies can also be applied to  $W \rightarrow \mu v!$ 



# Event Selection ( $W \rightarrow \mu v$ )



#### $M_{T} = \sqrt{p_{T}(\mu) * MET(1 - \cos(\Delta \phi_{\mu MET}))}:$ CMS preliminary 2010 $\sqrt{s} = 7 \text{ TeV}$ 150 number of events / 5 GeV 🗕 data $L \, dt = 198 \, nb^{-1}$ $W \rightarrow \mu \nu$ EWK QCD 100 50 0, 20 40 60 80 100 120 M<sub>⊤</sub> [GeV]

•  $N_w = 818 \pm 12$  ( $\varepsilon_{sig} = 64.1 \pm 0.2$ (stat.)%). • Estimate from binned LL fit.

### Data driven QCD BG Estimate ( $W \rightarrow \mu v$ )

#### Background Composition:

- $Z \rightarrow \mu \mu$  (3%)  $W \rightarrow \tau v$ ,  $Z \rightarrow \tau \tau$  (2%)
- QCD (Q-decays)  $\rightarrow$  data driven:
- I<sub>rel</sub>>0.20.



• Use full difference of MC for uncertainty estimate.

#### $M_{T} = \sqrt{p_{T}(\mu) * MET(1 - \cos(\Delta \phi_{\mu MET}))}:$



### Event Selection (W→ev)

#### **Preselection:**

- Trigger:  $e/\gamma |\eta| < 2.5$ ,  $E_{\tau} > 5$  GeV.
- Restriction to fiducial volume.
- Electron category 'loose' ( $\epsilon \sim 94\%$ ):
- E<sub>τ</sub>(e)>20 GeV, |η|<2.47.





19

### Event Selection (W→ev)

#### **Final Selection:**

- Electron category 'tight' ( $\epsilon \sim 70\%$ ):
- No further isolation requirement (as used for BG estimate).
- MET>25 GeV &  $M_{\tau}$ >40 GeV





# Signal Extraction (W→ev)



Signal extraction as counting experiment after MT>40 GeV ( $N_w = 46$ ;  $\varepsilon_{MC} = 0.78 \pm 5$ (sys.)%)

# Semi-data driven QCD BG Estimate (W→ev)

- Use calorimeter based isolation:  $I_{rel} = \Sigma E_T (\Delta R < 0.3) / E_T (e)$
- Apply all requirements but electron category 'tight' (for statistics reasons).
- Binned LL fit (shapes taken from MC).
- Extrapolate to electron category 'tight'.
- $N_{QCD}(est)=1$ , in the signal region.



# **Cross Section Determination**



# **Systematic Uncertainties**

#### Are taken from:

- Known limitations (e.g. luminosity, BR's).
- Comparisons of data with the simulation.
- Limited knowledge/modeling (hadronization).

#### Implementation:

- Apply as numbers, propagate uncertainty.
- Vary of shift (shapes or parameters) & redo the analysis to check sensitivity.
- Change model and check sensitivity.



#### Art of measurement:

Define measurements, which are not sensitive to the most prominent systematics (e.g. ratios, clever phasespace definition, new methods!)

#### Example:

 $\left[ \Sigma p_{T}^{\text{tracks}} + \Sigma E_{T}^{\text{ECAL}} + \Sigma E_{T}^{\text{HCAL}} \right] / p_{T}^{\mu}$ , threshold

Top mass from lifetime meas.

# **Systematic Uncertainties**

#### For the muon example:

| Source                                 | W channel (%) | Z channel (%) |
|----------------------------------------|---------------|---------------|
| Muon reconstruction/identification     | 3.0           | 2.5           |
| Trigger efficiency                     | 3.2           | 0.7           |
| Isolation efficiency                   | 0.5           | 1.0           |
| Muon momentum scale / resolution       | 1.0           | 0.5           |
| $E_T$ scale / resolution               | 1.0           | -             |
| Background subtraction                 | 3.5           | -             |
| PDF uncertainty in acceptance          | 2.0           | 2.0           |
| Other theoretical uncertainties        | 1.4           | 1.6           |
| TOTAL (without luminosity uncertainty) | 6.3           | 3.8           |
| Luminosity                             | 11.0          | 11.0          |

Statistical uncertainty: ~4% (W $\rightarrow$ µv) ; ~12% (Z $\rightarrow$ µµ)

# **Inclusive Cross Section**





 $σ_{tot}(Z → μμ) = 0.9 \pm 0.1(stat) \pm 0.04(syst) \pm 0.1(lumi) nb$  $σ_{tot}(W → μν) = 9.14 \pm 0.33(stat) \pm 0.58(syst) \pm 1.00(lumi) nb$ 



 $\sigma_{tot}(W \rightarrow ev) = 8.5 \pm 1.3(stat) \pm 0.7(syst) \pm 0.9(lumi) \text{ nb}$ 

### **Cross Section Ratio**







 $R(Z/W) = 10.4 \pm 1.2(stat) \pm 0.7(syst)$ 

### Charge Asymmetry





28

### W+Jets



#### AK5(Pflow)>15GeV

AK5(Pflow)>30GeV



# **Conclusions and Outlook**

- First nice Z/W measurements already with  $O(100 \text{ nb}^{-1}) \rightarrow \text{typical runwise lumi now!}$
- We can watch W bosons being reconstructed in our online DQM GUIs
- W(Z) can be used to constrain LHC PDFs
- •Z is a phantastic tool for detector understanding (only touched slightly)
- W/Z give very good real life(!) examples how to make measurements at the LHC.

Many thanx for your attention. After some discussion enjoy your lunch break...