Physics with jets at LHC and Tevatron

some selected topics

Thomas Nunnemann

Ludwig-Maximilians-University, Munich

German LHC Physics School and Workshop DESY, 27.9.-01.10.2010

High E_T jet production at hadron colliders

- test perturbative QCD
- constrain structure of the proton
- → parton distribution functions (PDFs) in particular: inclusive jet production sensitive to gluon PDF
- measure important backgrounds to searches for Higgs, Supersymmetry, and other new physics
 - processes with large jet multiplicities only calc. to LO → large uncert.
 - data to constrain models, to tune generators for Tevatron and LHC
 - also important: jets in association with W/Z (tomorrow's topic)
- search for new phenomena in signatures with jets (e.g. resonances)

New Physics vs. Standard Model: e.g. quark substructure?

quark substructure would result in an increased cross section at large
 E_T (cf. elastic → inelastic ep scattering)

before one can claim discovery, need to fix:

- jet energy calibration
- gluon PDF at large x

Jet reconstruction

 α_s

Jet reconstruction (see also Philipp's lecture)

- Tevatron: standard in Run II: seeded, iterative, midpoint cone algorithm
 - use particles (calorimeter tower) as seeds
 - add particles within cone using 4-vectors (*E*-scheme)
 - iterate until stable
 - use mid-points between jets as additional seeds
 - \rightarrow improved infrared stability
 - split/merge jets with overlapping cones

- LHC: standard at ATLAS and CMS: anti-k_T algorithm
 - sequential clustering: successive recombination of particles using distance measure
 - $d_{ij} = \min(k_{T_i}^{-2}, k_{T_i}^{-2}) \Delta R_{ij}/R$
 - \rightarrow clustering: high \rightarrow low p_T
 - \sim cone-shaped jets of radius R
 - infrared and collinear safe

Jet production and measurements

- unfold measurements to the hadron (particle) level
 - need jet energy scale calibration and energy resolution

↓ data-theory comparison at hadron (particle) level ↑

- correct parton-level theory for non-perturbative effects
 - fragmentation/hadronization, underlying event

dijets - mass

Jet energy scale (JES) calibration (see also Konstantinos' lecture)

- $E_{\text{particle}} = \frac{E_{\text{cal}} O}{R \cdot S}$
 - *E*_{cal}: measured energy (calorimeter, at EM scale)
 - O: offset energy: noise from electronics, uranium, pileup, multiple collisions
 - R: calorimeter response: determined from E_T-balance in γ+jet events
 - S: showering correction: net flow of energy in and out of cone
- DO: JES uncertainties as low as 1.2% for central jets with p_T ~ 100 GeV
 ← 7 years of work!

Parton to hadron correction

- parton-level prediction (e.g. NLO pQCD) needs to be corrected for non-perturbative effects
 - hadronization: particles originating from parton go outside jet cone (note: first hard gluon emission is already accounted for by NLO pQCD)
 - underlying event contributes energy to jet cone not associated with hard scatter
- correction factor and uncertainty estimated using event generators (e.g. (PYTHIA, HERWIG)

• e.g. midpoint cone,
$$R = 0.7$$

Parton to hadron correction

- e.g. anti- k_T , R=0.5 (CMS)
- near cancellation of hadronization and underlying event correction at large jet p_T
- large uncertainties at low p_T

 α_s

Inclusive jet production

 kinematic reach in (x, Q²) compared to HERA and fixed target experiments

- Tevatron: sensitive to PDFs at large momentum fractions x and scales Q²
- ► LHC: reaching even higher Q² and low x
- sensitive to gluon content of the proton

Towards a measurement of $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d}y}$ for inclusive jet production

▶ reminder: rapidity of particle with *E*, p_z : $y \equiv \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$

note: if
$$p \gg m$$
:
 $y \approx \frac{1}{2} \ln \left(\frac{|\vec{p}| + \rho_z}{|\vec{p}| - \rho_z} \right) = -\ln \left(\tan \frac{\theta}{2} \right) \equiv \eta$
 η : pseudo-rapidity

- ingredients:
 - trigger
 - event selection
 - background subtraction
 - jet energy calibration (already discussed)
 - jet energy resolution
 - jet reconstruction efficiencies
 - unsmearing/unfolding

Trigger: raw spectra

- inclusive jet triggers are prescaled except for highest E_T threshold
- \rightarrow for each p_T bin: use fully efficient trigger with lowest possible prescale
- determine trigger efficiency using trigger with lower threshold (or minimum bias trigger for lowest threshold)

- use efficiency plateau to avoid trigger systematics
- \rightarrow sharp turn-on required for efficient data taking
- using a different jet definition for offline reconstruction than for online triggering widens turn-on (e.g. particle-flow vs. calorimeter tower)

Thomas Nunnemann, LMU Munich

Background sources

- physics background: other sources of genuine jets essentially negligible
- instrumental backgrounds, fake jets
 - spurious jets from noisy cells, EM objects: remove with jet quality & shape cuts
 - remaining source (DØ): bremsstrahlung from cosmic rays
 - → cut on p_T / ∉_T ratio
 another common variable to remove cosmic ray and beam related bgd.: ∉_T significance ∉_T / √∑ E_T

Background sources

- physics background: other sources of genuine jets essentially negligible
- instrumental backgrounds, fake jets
 - spurious jets from noisy cells, EM objects: remove with jet quality & shape cuts
 - remaining source (DØ): bremsstrahlung from cosmic rays

 \rightarrow cut on $p_T/\not\!\!\! E_T$ ratio

• another common variable to remove cosmic ray and beam related bgd.: $\not\!\!E_T$ significance $\not\!\!E_T/\sqrt{\sum E_T}$

Jet ID efficiencies

- JetID efficiency can be determined with the tag-and-probe method
 - tag is a good jet (or a photon) and an opposite track jet
 - probe is a reconstructed jet close to the track jet

Jet energy resolution

- defines migration true $p_T \leftrightarrow \text{reco } p_T$
- from simulation: reco p_T vs. particle p_T

 $\frac{\sigma_{p_T}}{p_T} = \sigma \left(\frac{p_T^{\text{reco}} - p_T^{\text{ptcl}}}{p_T^{\text{ptcl}}} \right)$

tail at underestimated $p_T^{\rm reco}$ due to punch-through

from measured dijet asymmetry A

 $A = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \Rightarrow \frac{\sigma_{P_T}}{p_T} = \sqrt{2}\sigma_A$

requires corrections for soft radiation (unreconstructed soft jets) and particle level imbalance (e.g. fragmentation fluctuations, primordial k_T of partons inside proton)

 CMS: improved resolution using particle flow (especially at low p_T)

- defines migration true $p_T \leftrightarrow \text{reco } p_T$
- from simulation: reco p_T vs. particle p_T

 $\frac{\sigma_{p_T}}{p_T} = \sigma \left(\frac{p_T^{\text{reco}} - p_T^{\text{ptcl}}}{p_T^{\text{ptcl}}} \right)$

tail at underestimated $p_T^{\rm reco}$ due to punch-through

from measured dijet asymmetry A

 $A = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \Rightarrow \frac{\sigma_{PT}}{p_T} = \sqrt{2}\sigma_A$

requires corrections for soft radiation (unreconstructed soft jets) and particle level imbalance (e.g. fragmentation fluctuations, primordial k_T of partons inside proton)

 CMS: improved resolution using particle flow (especially at low p_T)

Unsmearing/unfolding

- need to unfold/unsmear for resolution and efficiency
- ► steeply falling spectrum → mostly migration to higher p_T
- several unfolding techniques
 - (iterative) bin-by-bin unsmearing
 - Bayesian unfolding
 - regularized matrix inversion
- most popular (for incl. jet meas.): bin-correction using ansatz function
 - true distribution: $f(p_T)$
 - reco distr.:

 $F(p_T) = \int_0^\infty f(p_T') R(p_T' - p_T; \sigma) \mathrm{d}p_T'$

with smearing function $R(p_T' - p_T; \sigma)$

 $\rightarrow \text{ unfolding correction} \\ C_{\text{res}}(p_T) = f(p_T)/F(p_T)$

Unsmearing/unfolding

 CMS: smaller unfolding correction for particle flow compared to calorimeter jets thanks to improved resolution

 α_s

Inclusive jet p_T cross sections

- measurements of $\frac{d^2\sigma}{dp_T dy}$: tests of pQCD over 8 decades
- sensitive to new physics at high $p_T(jet)$
 - benefits from increased Run II energy (√s = 1.8 → 1.96 TeV), e.g. cross section ×5 at p_T(jet) = 600 GeV

Thomas Nunnemann, LMU Munich

Inclusive jet p_T : data/theory, uncertainties

- both measurements are in agreement with NLO pQCD
 - both data sets favor smaller gluon densities
- exp. systematics (dominated) by JES uncertainty) <theory uncert. (mostly PDF)
 - thanks to precise JES
- PDF sensitivity: $x \propto 2p_T/\sqrt{s}$

Correlation of uncertainties

- using correlation information in global PDF fit should reduce the effective uncertainty of the measurement
- main uncertainties are from JES
- 23 correlated systematic uncertainties considered

PDF influence of Tevatron data

- MSTW2008 and CT10 (also CT09) PDF fits include Tevatron Run II inclusive jets
 - Run II data lead to softer high-x gluons and provide more precise constraints
 - no visible reduction in PDF uncertainty due to new fit procedures
 - ► Run II data more consistent with DIS measurements than Run I Gluon distribution at $Q^2 = 10^4 \text{ GeV}^2$

First LHC results

- inclusive jet cross sections based on first ATLAS and CMS data
- ▶ both ATLAS and CMS use anti-*k*_T jets (default algorithm)
- CMS: 3 methods to reconstruct jets using different detector information: calorimeter, calorimeter corrected w. tracks, particle flow

Thomas Nunnemann, LMU Munich

LHC: PDF sensitivity

- jet energy scale uncertainty largely dominates exp. systematics
 - conservative estimates: ATLAS: 7%, CMS (particle flow): 5%
 - expect significant improvements soon, but remember long process at Tevatron

theory: NLO pQCD, uncert. dominated by

- ▶ low *p*_T: non-perturbative corrections
- high p_T: PDF uncertainty
- for central rapidities, cross section for fixed x_T = 2p_T/√s ∝ x: σ(LHC) ≪ σ(Tevatron)
 - Tevatron will still be more sensitive to high-x gluon for several years.

LHC: PDF sensitivity

- jet energy scale uncertainty largely dominates exp. systematics
 - conservative estimates: ATLAS: 7%, CMS (particle flow): 5%
 - expect significant improvements soon, but remember long process at Tevatron
- theory: NLO pQCD, uncert. dominated by
 - ▶ low *p*_T: non-perturbative corrections
 - high p_T: PDF uncertainty
- ► for central rapidities, cross section for fixed $x_T = 2p_T/\sqrt{s} \propto x$: $\sigma(\text{LHC}) \ll \sigma(\text{Tevatron})$
 - Tevatron will still be more sensitive to high-x gluon for several years.

- jet energy scale uncertainty largely dominates exp. systematics
 - conservative estimates: ATLAS: 7%, CMS (particle flow): 5%
 - expect significant improvements soon, but remember long process at Tevatron
- theory: NLO pQCD, uncert. dominated by
 - ▶ low *p*_T: non-perturbative corrections
 - high p_T: PDF uncertainty
- ► for central rapidities, cross section for fixed $x_T = 2p_T/\sqrt{s} \propto x$: $\sigma(\text{LHC}) \ll \sigma(\text{Tevatron})$
 - Tevatron will still be more sensitive to high-x gluon for several years.

 α_s

Inclusive jets: SIS cone vs. midpoint cone

hadron level

parton level

 \Rightarrow effect on data/pQCD comparison <1%

- inclusive jet cross section directly related to α_s measurement:
 σ_{theory}(α_s) = σ_{pert}(α_s) · c_{nonpert}
 σ_{pert}(α_s) =
 (∑_n αⁿ_s c_n) ⊗ f₁(α_s) ⊗ f₂(α_s)
- c_n : NLO pQCD + 2-loop corr.
- ► $f_{1,2}(\alpha_s)$: MSTW2008NNLO α_s dependent fits: $\alpha_s(M_Z) = 0.110 - 0.130$
- keep only 22 (of 110) data points in kinematic region where PDF fit is not dominated by Tevatron:

 $x_{
m max} \lesssim 0.25$

dijets - mass

α_s from inclusive jets

- measurement of running α_s at highest p_T (together with CDF Run I)
- most precise determination of *a_s* from hadron collider

 $\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$

- uncertainties:
 - experimental: +0.0034 -0.0033
 - ▶ theory: +0.0023 -0.0035

 $(\mu_{r/f} \text{ variation, non-perturbative corrections , PDF})$

 α_s

Dijet mass cross section

▶ measurement of $\frac{d^2\sigma}{dM_{JJ}d|y|_{max}}$ in 6 rapidity bins up to $M_{JJ} \sim 1.3 \text{ TeV}$

 M_{JJ} : dijet mass, $|y|_{\max} = \max(|y_1|, |y_2|), \ p_{T1,2} > 40\,\mathrm{GeV}$

- central rapidities: data well described by pQCD
- forward region: data below prediction
 - reminder: MSTW2008 includes Run II incl. jets
 - discrepancy w.r.t. CTEQ6.6 even larger

Thomas Nunnemann, LMU Munich

Dijet mass: searches for resonances

- dijet mass distribution for jet rapidities
 |y| < 1
- sensitive to new particles decaying into dijets: q*, W', Z', ρ_T, axigluon, Randall-Sundrum-graviton, etc.
 - produced more centrally s-channel production vs. t-channel scattering (QCD)
- search for narrow mass resonance as signal of physics beyond the Standard Model (BSM), lower mass bounds, e.g.:
 - $M(q^*) > 870 \,\mathrm{GeV}$
 - M(axigluon) > 1.25 TeV

This is history by now...

Dijet mass: searches for resonances

- dijet mass distribution for jet rapidities
 |y| < 1
- sensitive to new particles decaying into dijets: q*, W', Z', ρ_T, axigluon, Randall-Sundrum-graviton, etc.
 - produced more centrally s-channel production vs. t-channel scattering (QCD)
- search for narrow mass resonance as signal of physics beyond the Standard Model (BSM), lower mass bounds, e.g.:
 - *M*(*q**) > 870 GeV
 M(axigluon) > 1.25 TeV

This is history by now...

 α_s

Dijet event with $M_{jj} = 2.55 \,\mathrm{TeV}$

$$p_{T,1} = 420 \,\text{GeV}$$

 $\eta_1 = 1.51$
 $p_{T,2} = 320 \,\text{GeV}$
 $\eta_2 = 2.32$

dijet event with $M_{jj} = 1.92 \,\mathrm{TeV}$

signal, $M(q^*) = 1 \,\mathrm{TeV}$

Dijets: QCD vs. q^* signal QCD, 875 $\leq M_{ii} < 1020 \, \text{GeV}$

• maximize S/\sqrt{B} by requiring $|\eta_{1,2}| < 2.5$ and $|\eta_1 - \eta_2| < 1.3$

Thomas Nunnemann, LMU Munich

Terascale Physics school, DESY, 27.9.-1.10.2010

intro

Dijet resonances: LHC takes over...

- ▶ with just 0.0003 fb⁻¹ LHC exceeds Tevatron sensitivity
 - ► M(q*) > 1.26 TeV

Dijet mass resonances

- preliminary search with similar sensitivity as ATLAS
 - studied generic qq, qg, and gg parton resonances
 - wider mass spectrum for gg resonances due to steeply rising gluon PDF at low x
 - → less stringent limits for gg

Thomas Nunnemann, LMU Munich

Terascale Physics school, DESY, 27.9.-1.10.2010

dijets - mass

Dijet angular distribution

- provides sensitivity for NP without mass resonance or resonance mass above kinematic reach
- measurement of

 $1/\sigma_{
m dijet} \cdot {
m d}\sigma/{
m d}\chi_{
m dijet}$ in bins of M_{jj}

- $\chi_{\text{dijet}} = \exp(|y_1 y_2|)$
- massless $2 \rightarrow 2$ scattering:
 - $\chi_{\text{dijet}} = \frac{(1+\cos\theta^*)}{(1-\cos\theta^*)}$
- ▶ BSM: excess at large M_{jj} and small χ_{dijet}
- consistent with NLO QCD
- Iimits on BSM mass scales:
 - quark compositeness (contact interaction scale A): ~2.9 TeV
 - ▶ large extra dimensions (ADD (GRW) and TeV⁻¹): ~1.6 TeV

Thomas Nunnemann, LMU Munich

Dijet angular distribution

- provides sensitivity for NP without mass resonance or resonance mass above kinematic reach
- measurement of

 $1/\sigma_{
m dijet} \cdot {
m d}\sigma/{
m d}\chi_{
m dijet}$ in bins of M_{jj}

- $\chi_{\text{dijet}} = \exp(|y_1 y_2|)$
- massless $2 \rightarrow 2$ scattering:
 - $\chi_{\text{dijet}} = \frac{(1+\cos\theta^{\star})}{(1-\cos\theta^{\star})}$
- ► BSM: excess at large M_{jj} and small χ_{dijet}
- consistent with NLO QCD
- Iimits on BSM mass scales:
 - quark compositeness (contact interaction scale Λ): ~2.9 TeV
 - ► large extra dimensions (ADD (GRW) and TeV⁻¹): ~1.6 TeV

Thomas Nunnemann, LMU Munich

LHC has taken over again... χ distribution

dijets - mass

 \triangleright χ distribution: limit on contact interaction scale $\Lambda > 3.4 \,\mathrm{TeV}$ $(expected 3.5 \, TeV)$

• centrality ratio $R_C = N(|j_{1,2}| < 0.7)/N(0.7 < |j_{1,2}| < 1.3)$: $\Lambda > 2.0 \,\mathrm{TeV} \ (\text{expected } 2.6 \,\mathrm{TeV}) \rightarrow \text{less sensitive}$

Thomas Nunnemann, LMU Munich

Terascale Physics school, DESY, 27.9.-1.10.2010

Conclusions

- rich physics program with jets ranging from QCD to searches
- ► understanding of high E_T jet production significantly advanced over the last years at Tevatron and now also LHC
- inclusive jet cross section
 - precise jet energy scale calibration is crucial
 - $\rightarrow\,$ precision measurement of running $\alpha_{\rm s}$
 - \rightarrow stringent constraints on gluons at high x
 - LHC: need improved calibration and higher luminosities
- multijets
 - agreement with NLO QCD, but Tevatron data prefer lower bound on theory
- dijet mass and angular distribution sensitive to various new phenomena
 - LHC sensitivity has already surpassed Tevatron

Conclusions

- rich physics program with jets ranging from QCD to searches
- ► understanding of high E_T jet production significantly advanced over the last years at Tevatron and now also LHC
- inclusive jet cross section
 - precise jet energy scale calibration is crucial
 - $\rightarrow\,$ precision measurement of running $\alpha_{\rm s}$
 - $\rightarrow\,$ stringent constraints on gluons at high x
 - LHC: need improved calibration and higher luminosities
- multijets
 - agreement with NLO QCD, but Tevatron data prefer lower bound on theory
- dijet mass and angular distribution sensitive to various new phenomena
 - LHC sensitivity has already surpassed Tevatron
- Stay tuned for rapidly improving precision, sensitivity to new phenomena and maybe discoveries!