Update on GEANT4 Simulation

Oleksandr Borysov

LUXE S&A Meeting July 13 2021

HDF5 MC final-state group

Implemented G4 input of HDF5 MC

Option in mac file:

#/lxphoton/gun/beamType n /lxphoton/gun/beamType n /lxphoton/gun/MCParticlesFile 1.

mc mchdf5 1.00_particles.h5

h5dump -n /nfs/dust/luxe/group/MCProduction/Signal/ptarmigan-v0.7-preview/e_laser/phase0/1.00_particles.h5

/final-state group /final-state/electron group MeV dataset /final-state/electron/momentum dataset /final-state/electron/n gamma dataset /final-state/electron/position m dataset /final-state/electron/weight /final-state/photon group /final-state/photon/a0 at creation dataset dataset /final-state/photon/momentum dataset /final-state/photon/n pos dataset /final-state/photon/position /final-state/photon/weight dataset link /final-state/photon/xi -> a0 at creation /final-state/positron group /final-state/positron/momentum dataset /final-state/positron/n_gamma dataset dataset /final-state/positron/position /final-state/positron/weight dataset

- In out files we had GeV and um;
- Seems particleID is not available in final-state group. (corresponding file: 1.00_particles.h5 has it)

Approximation of the field measurements

B (J

Z (mm)

[0] / ((1.0 + exp(([1]-x)/[2])) * (1.0 + exp((x-[3])/[4])))

Magnet current I = 380 A

Chi2	,g =	0.334513		$\Delta \Delta \Delta$
NDf		496		500 A
Edm		7.19831e-09		
NCalls	=	166		
p0		1.52962	+/-	0.00179954
p1	=	-615.371	+/-	0.513627
p2		28.9891	+/-	0.456426
p3		621.238	+/-	0.516122
p4		29.2464	+/-	0.458235

[0] * ((1.0 + TMath::Erf((x-[1])/[2])) * (1.0 + TMath::Erf(([3]-x)/[4])))

*****	*****	****		
Minimizer is Min	uit / Migrad			
Chi2		0.360549		
NDf		496		
Edm		6.6431e-07		
NCalls	=	192		
р0		0.381775	+/-	0.000464131
p1		-615.852	+/-	0.5342
p2		69.1129	+/-	1.10464
р3		621.732	+/-	0.536833
p4	=	69.7404	+/-	1.1092

10 GeV electron, 300A field

- Uniform field
- Approximation using fit function in z and x
- Interpolated data (measurements) in z and approximation in x

Effect of limited transverse size of the field

Additional shielding

All shielding material is changed to tungsten including ECal casing

Simulated 100 k electrons of 16.5 GeV

- It would be interesting to check the deposited energy (absorbed dose) in tracking staves on electron side;
- Probably some shielding will be needed;

Alternative shielding geometry

- Implemented;
- Simulation is not run yet.

Change material of the stave endcap

PEEK CA 30: PolyEtherEtherKetone with 30% carbon fiber

Shielding optimization

Forward detector system with triangular chamber

Beam Pipe 4.2 cm + Triang chamber Al window 0.5 mm

MC HICS photon beam, E e= 16.5 GeV number_processed_bx: 4722

Shielding - 3-layer Al-Fe-Al 90 cm thick

Shielding - Concrete 30 cm vs 80 cm vs 90 cm AlFeAl

UG03 STL vs CSG

Event display with hits and tracks

Combined hits and tracks of events 2100-2105

w0_3000nm_vc_al_window/luxe_hics_signal_165gev_3000nm_jeti40_cv12_em0_alw_1mu_cut_tv4_hv1_1.root

root -I lxeve geom tree gui.C'("lxgeomdump hics 91c0c7ee nc dump no incerts.gdml", "luxe hics signal 165gev 3000nm jeti40 cv12 em0 alw 1mu cut tv4 hv1 1.root")'

Summary

- Magnetic field models based on measurements and functional approximation are implemented;
- HDF5 MC reading is implemented;
- ECal shielding design needs to be finalized;
- Concrete looks good as a material for gamma spectrometer shielding; with a thickness of 0.8 m it shows identical performance as previously used AI-Fe-AI;
- Switched to CSG implementation of the infrastructure;
- Studied diamond and Be as a possible alternative for the window material. Diamond shows almost no change, Be generates ~30% less background, but rather complicated for real usage.
- Several geometry components need to be implemented or modified:
 - Interaction chamber,
 - Profiler,
 - Vacuum chamber;
 - Add electronics to Ecal;
 - Magnet

Backup

