Martin Goebel (DESY / Universität Hamburg) for the Gfitter group*

Advanced Statistics WS 2010 Göttingen 20th October 2010

Gfitter – Global Electroweak Fits in the Standard Model and Beyond

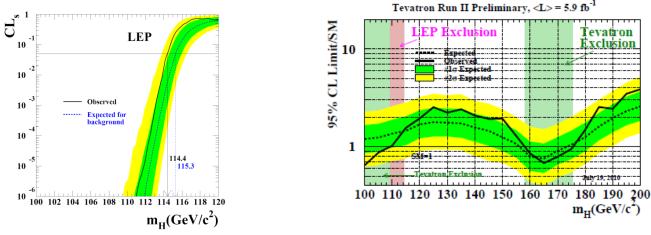
main paper Eur. Phys. J. C 60, 543 (2009)

http://cern.ch/Gfitter

*) M. Baak (CERN), M. G. (Univ. Hamburg, DESY), J. Haller (Univ. Göttingen), A. Höcker (CERN), D. Ludwig (Univ. Hamburg, DESY), K. Mönig (DESY), M. Schott (CERN) J. Stelzer (DESY/Michigan)

A Generic Fitter Project for HEP Model Testing

- <u>SUSY / BSM Fit Working Group of the Helmholtz Alliance</u>
- Goal: provide a state-of-the-art model testing tool for the LHC/ILC era
- modular, object-oriented C++, relying on ROOT, XML, python
- core package for data handling, fitting and statistics tools
 - various fitting tools: Minuit, Genetic Algorithm and Simulated Annealing
 - full statistics analysis: parameter scans, *p*-values, MC analyses, goodness-of-fit tests, ...
 - coherent treatment of statistical, systematic errors, and correlations
 - theo. uncertainties included in χ^2 with flat likelihood in allowed ranges
- physics plug-in packages
 - Library for the Standard Model fit to the electroweak precision data \rightarrow this talk
 - Library for SM extensions via the oblique parameters \rightarrow this talk
 - Library for the super-symmetric extension of the SM
 - Library for the 2HDM extension of the SM


A Gfitter Package for the Global Electroweak Fit

- state-of-the art calculations (OMS scheme); in particular:
 - M_W and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop correction [M. Awramik et al., Phys. Rev D69, 053006 (2004)][M. Awramik et al., JHEP 11, 048 (2006), (M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - radiator functions: N³LO of the massless QCD Adler function [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]
- theoretical uncertainties: $M_W (\delta M_W = 4-6 \text{ GeV})$, $\sin^2 \theta_{eff}^{I} (\delta \sin^2 \theta_{eff}^{I}) = 4.7 \cdot 10^{-5}$, truncation of higher QCD orders
 - included in χ^2 with flat likelihood \rightarrow vary within uncertainties without contribution to χ^2

Experimental Input

- usage of latest experimental results:
 - Z-pole observables: LEP/SLD results [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
 - M_W and Γ_W : LEP/Tevatron M_W =80.399 ± 0.023 GeV [ADLO, hep-ex/0612034] [CDF, Phys. Lett. 100, 071801 (2008)] [CDF&D0, Phys. Rev. D 70, 092008 (2004)] [CDF&D0, arXiv:0908.1374v1]
 - m_{top} : m_{top} =173.3 ± 1.1 GeV [D0&CDF, arXiv:1007.3178]
 - $\Delta \alpha_{had}^{(5)}(M_z^2)$: including α_S dependency [Davier, Hoecker, Malaescu. Zhang]
 - m_c, m_b: world averages [PDG, J. Phys. G33,1 (2006)]
- floating fit parameters: M_Z , M_H , m_t , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\alpha_S(M_Z^2)$, $\overline{m}_{c'}$, \overline{m}_b
- fits are performed in two versions:
 - all data except results from direct Higgs searches
 - all data including results from direct Higgs searches at LEP [ADLO: Phys. Lett. B565, 61 (2003)] and Tevatron [CDF+D0: arXiv: 1007.4587]

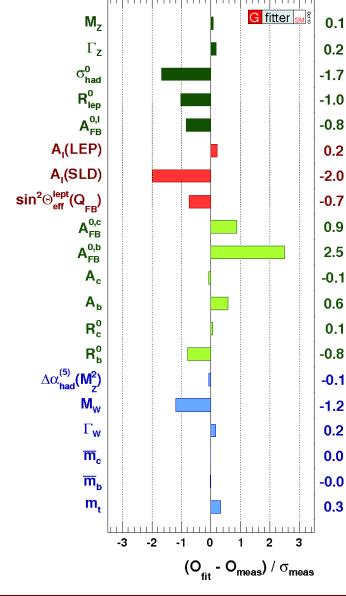
$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta\alpha(s)}, \qquad \Delta\alpha(s) = \Delta\alpha_{\rm lep}(s) + \Delta\alpha_{\rm had}^{(5)}(s) + \Delta\alpha_{\rm top}(s)$$

- leptonic (top) contribution to running of α precisely known (small)
- new value for hadronic contribution [Davier, Hoecker, Malaescu. Zhang]
 - several improvements: new $\pi\pi$ cross-section data from KLOE, all available multi-hadron data from BABAR, reevaluation of the continuum contributions from perturbative QCD at four loops, ...

$$\Delta \alpha_{had}^{(5)}(M_Z^2) = (274.2 \pm 1.0) \cdot 10^{-4}$$

- error includes uncertainty of α_S (0.37 10⁻⁰⁴), which is a free fit parameter and has therefore no uncertainty in a certain fit step
- \Rightarrow subtract α_{s} uncertainty from total error
- variation of α_s needs to be included in the central value (Gfitter rescaling mechanism)

$$\Delta \alpha_{had}^{(5)}(M_Z^2) = \left(274.2 \pm 0.97 \pm 0.37 \cdot \left(\frac{\alpha_s(M_Z^2) - 0.1193}{0.0028}\right)\right) \cdot 10^{-4}$$

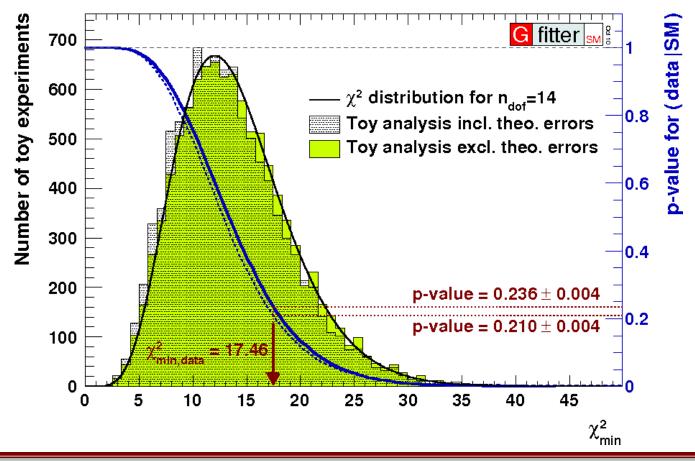

Goodness-of-Fit

naïve p-value

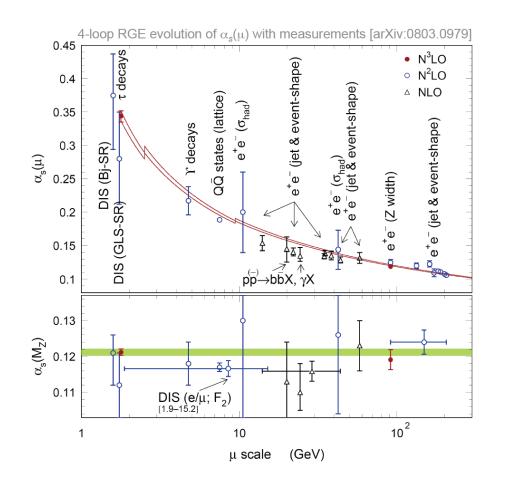
- w/o direct Higgs searches: $\chi^2_{min} = 16.6 \rightarrow \text{Prob}(\chi^2_{min}, 13) = 0.22$
- with direct Higgs searches: $\chi^2_{min} = 17.5 \rightarrow \text{Prob}(\chi^2_{min}, 14) = 0.23$

pull-values for the fit with Higgs searches (right figure →)

- FB asymmetry of bottom quarks \rightarrow largest contribution to χ^2
- no value exceeds 3σ
- small contributions from M_Z , $\Delta \alpha_{had}^{(5)} m_c$, and m_b indicate that their input accuracies exceed fit requirements
- ⇒ no significant requirement for new physics



Goodness-of-Fit



- p-value: probability for wrongly rejecting the SM
- p-value: probability for getting a $\chi^2_{min,toy}$ larger than the $\chi^2_{min,data}$ from data
- p-value for fit with Higgs searches $0.24 \pm 0.03 0.02_{\text{theo}}$

Determination of Strong Coupling

- R_I observable most sensitive to α_s
- N³LO (massless Adler function) determination of α_s from complete fit:

 $\alpha_{\rm s}(M_{\rm Z}) = 0.1193 \pm 0.0028$

± 0.0001

- first error experimental
- second error theoretical [incl. variation of renorm. scale from $M_Z/2$ to $2M_Z$ and massless terms of order/beyond $a_S^5(M_Z)$ and massive terms of order/beyond $a_S^4(M_Z)$]
- excellent agreement with N³LO result from hadronic τ decays [M. Davier et al., arXiv:0803.0979]

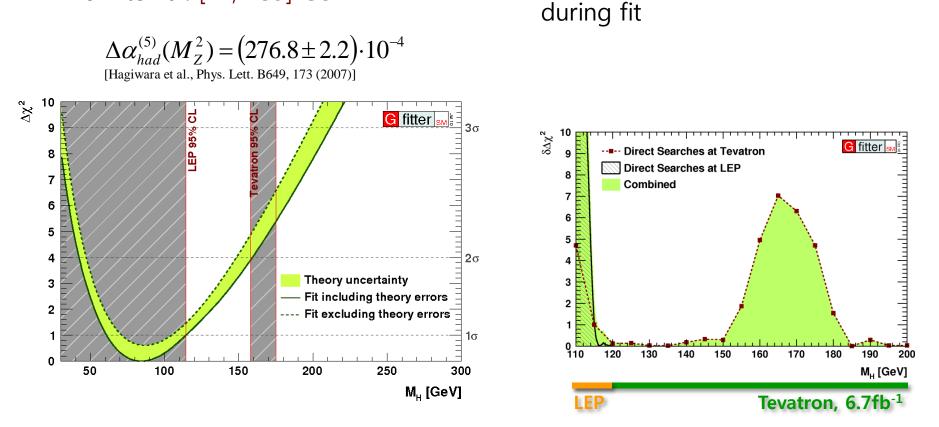
 $\alpha_{s}(M_{Z}) = 0.1212 \pm 0.0005_{exp}$

- ± 0.0008_{theo}
- ± 0.0005_{evol}

•

Higgs Mass Constraints (old $\Delta \alpha_{had}$)

with direct Higgs searches:

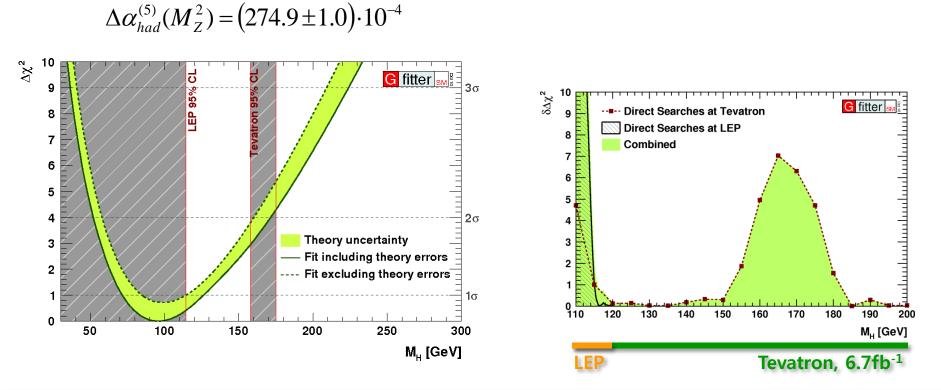

and Tevatron

direct Higgs searches from LEP

resulting contribution added to χ^2

w/o direct Higgs searches:

- value at minimum $\pm 1\sigma$: $M_{\rm H} = 83^{+30}_{-23} \text{ GeV}$
- 2σ interval: [42, 159] GeV



Higgs Mass Constraints

w/o direct Higgs searches:

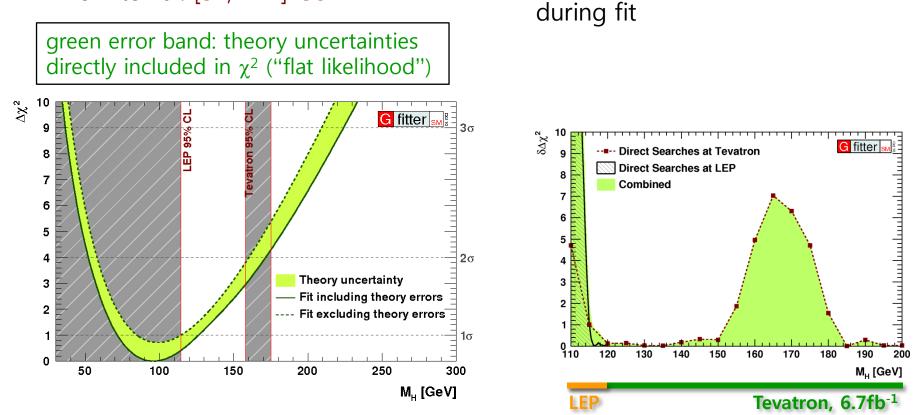
- value at minimum $\pm 1\sigma$: $M_{\rm H} = 96^{+31}_{-24} {\rm GeV}$
- 2σ interval: [52, 172] GeV

with direct Higgs searches:

- direct Higgs searches from LEP and Tevatron
- resulting contribution added to χ² during fit

Higgs Mass Constraints

with direct Higgs searches:


and Tevatron

direct Higgs searches from LEP

resulting contribution added to χ^2

w/o direct Higgs searches:

- value at minimum $\pm 1\sigma$:
 - $M_{\rm H} = 96^{+31}_{-24} {\rm GeV}$
- 2σ interval: [52, 172] GeV

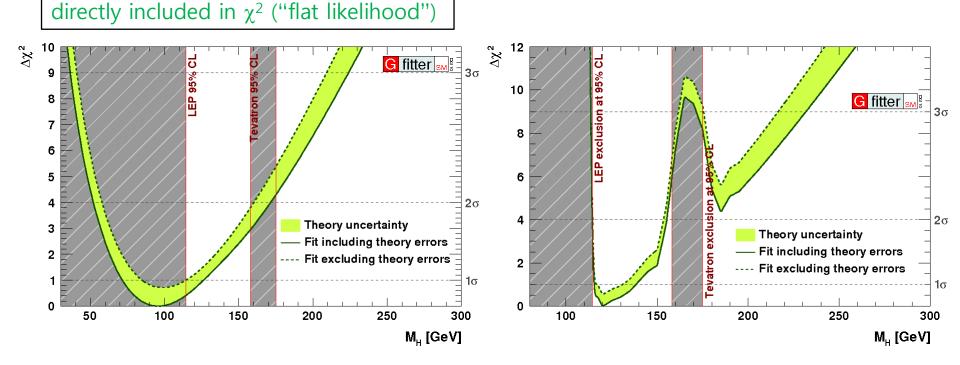
Higgs Mass Constraints

w/o direct Higgs searches:

value at minimum ±1σ:

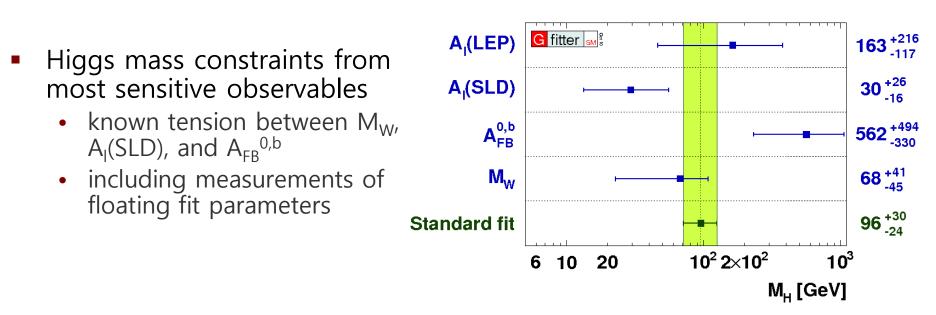
 $M_{\rm H} = 96^{+31}_{-24} {\rm ~GeV}$

green error band: theory uncertainties


2σ interval: [52, 172] GeV

with direct Higgs searches:

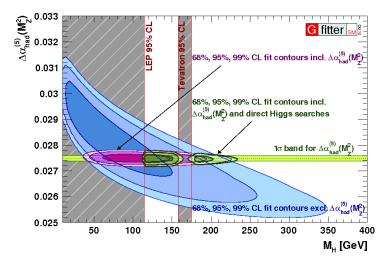
value at minimum ±1σ:


$$M_{\rm H} = 120.2^{+18.1}_{-4.7} \,\,{\rm GeV}$$

• 2σ interval: [114, 155] GeV

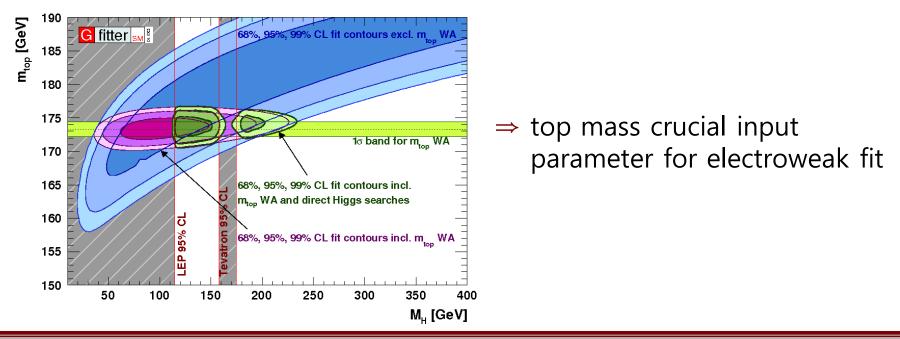
Testing most sensitive observables

- compatibility of these measurements:
 - MC toy analysis ("look-elsewhere-effect")
 - compare the χ^2_{min} of the full fit with χ^2_{min} of a fit without the least compatible measurement (here $A_{FB}^{0,b}$) $\rightarrow \Delta \chi^2_{min} = 7.9$
 - Generate toy sample around fitted values and repeat procedure by calculating the $\Delta \chi^2_{min} \rightarrow \Delta \chi^2_{min}^{toy}$ -distribution
 - 1.6% (2.4 σ) of toys show a result worse than the $\Delta\chi^2_{min}$ of the data

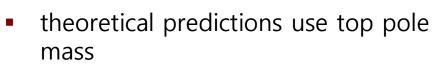

Fit Correlation between Fit Parameters

Parameter	$\ln M_H$	$\Delta \alpha_{ m had}^{(5)}(M_Z^2)$	M_Z	$\alpha_s(M_Z^2)$	m_t	\overline{m}_c	\overline{m}_b
$\ln M_H$	1	-0.17	0.13	0.03	0.32	-0.00	-0.01
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$		$\overbrace{1}^{1}$	-0.01	0.35	0.01	0.00	0.02
M_Z		2	1	-0.01	-0.01	-0.00	-0.00
$\alpha_s(M_Z^2)$		F		1	0.03	0.01	0.05
m_t		.e.			1	0.00	-0.00
\overline{m}_{c}		eavier Higgs				1	0.00
	due t						

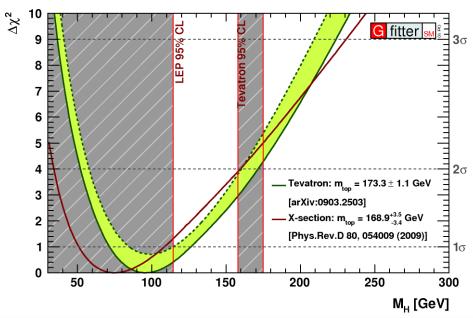
for comparison matrix determined by using old value for hadronic contribution to $\alpha_{QED} \rightarrow$ lighter Higgs

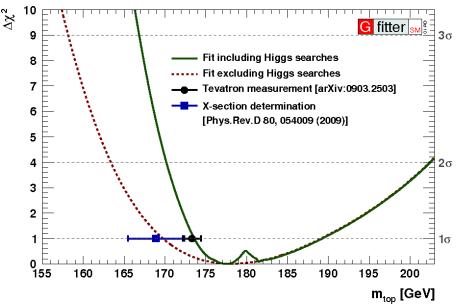

Parameter	$\ln M_H$	$\Delta \alpha_{\rm had}^{(5)}(M_{\rm c}^2)$	M_Z	$\alpha_s(M_Z^2)$	m_t	\overline{m}_c	\overline{m}_b
$\ln M_H$	1	-0.395	0.113	0.041	0.309	-0.001	-0.006
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$			-0.006	0.101	-0.007	0.001	0.003
M_Z			1	-0.019	-0.015	-0.000	0.000
$\alpha_s(M_Z^2)$				1	0.021	0.011	0.043
m_t					1	0.000	-0.003
\overline{m}_c						1	0.000

Fit Correlation between Fit Parameters



Parameter	$\ln M_H$	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	M_Z	$\alpha_s(M_Z^2)$	m_t	\overline{m}_{c}	\overline{m}_b
$\ln M_H$	1	-0.17	0.13	0.03	0.32	-0.00	-0.01
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$		1	-0.01	0.35	0.01	0.00	0.02
M_Z			1	-0.01	-0.01	-0.00	-0.00
$\alpha_s(M_Z^2)$				1	0.03	0.01	0.05
m_t					1	0.00	-0.00
\overline{m}_c						1	0.00




Martin Goebel

Top Mass Determination

- unclear definition of top mass at Tevatron: "MC" or pole mass? [Hoang &Steward., Nucl.Phys.Proc.Suppl.185:220-226,2008]
 ⇒ additional uncertainty?
- alternative: extract top mass from total top pair cross-section [Langenfeld, Moch, Uwer, Phys.Rev.D80:054009,2009]

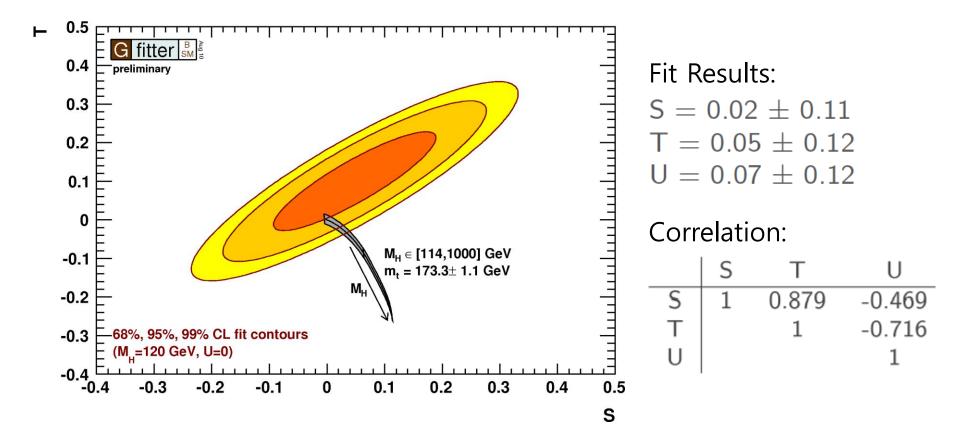

- direct: m_{top} =173.3 ± 1.1 GeV
- X-section: m_{top}=168.9 +^{3.5} -_{3.4} GeV
 SM Fit:
- w Higgs searches: m_{top}=177.4 ^{+11.8} -3.5 GeV
- w/o Higgs searches:
 m_{top}=178.2 ^{+10.9} _{-8.8} GeV

Martin Goebel

W and Top Mass

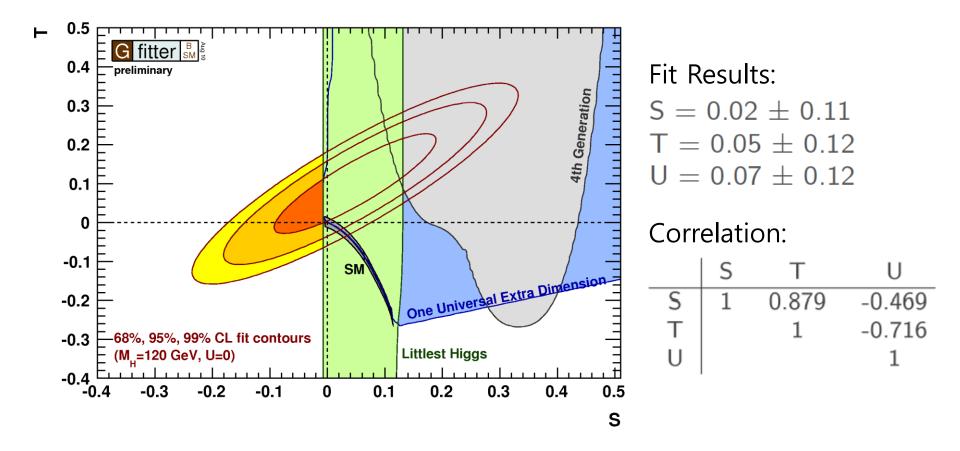


- indirect fit results agree with experimental values
- results from Higgs searches significantly reduce the allowed parameter space
- illustrative probe of SM (if M_H is measured at LHC and/or ILC)


A Gfitter Package for SM Extensions

- oblique electroweak corrections to SM observables (physics beyond SM appear only through vacuum polarizations)
- STU parameters [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
 - $O_{\text{measurement}} = O_{\text{SM}}(M_{\text{H,ref}}, m_{\text{t,ref}}) + c_{\text{S}}S + c_{\text{T}}T + c_{\text{U}}U$
 - S=T=U=0 if data are equal to SM_{ref} prediction
 - $\ensuremath{\mathsf{S}}$: new physics contribution to neutral current processes
 - (S+U) : new physics contribution to charged current processes
 U only sensitive to W mass and width
 usually very small in new physics models (often: U=0)
 - T : difference between neutral and charged current processes (sensitive to isospin violation)
 - also implemented corrections to Zbb couplings [Burgess et al., Phys. Lett. B326, 276 (1994)] [Burgess et al., Phys. Rev. D49, 6115 (1994)]

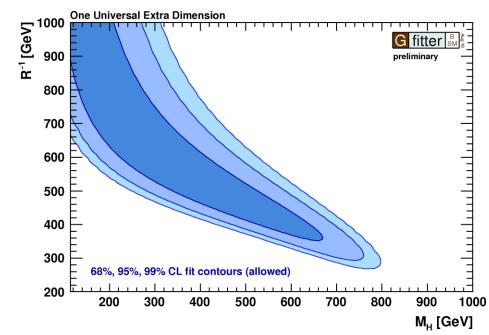
Fit to Oblique Parameters

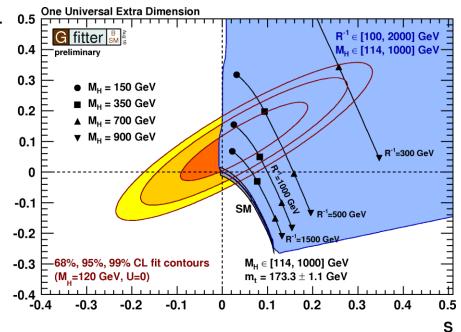

- derived from fit to electroweak observables (see global SM fit)
 - SM_{ref}: M_H=120 GeV, m_t=173.3 GeV
- comparison with SM prediction of ST parameters

UH

Fit to Oblique Parameters

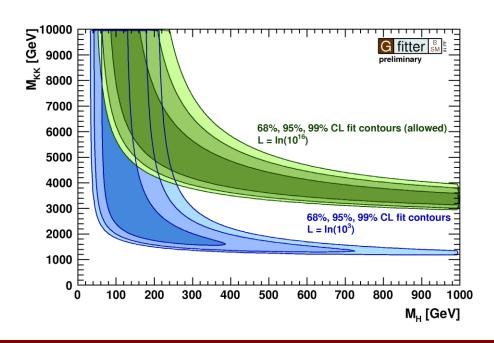
- derived from fit to electroweak observables (see global SM fit)
 - SM_{ref}: M_H=120 GeV, m_t=173.3 GeV
- comparison with new physics prediction

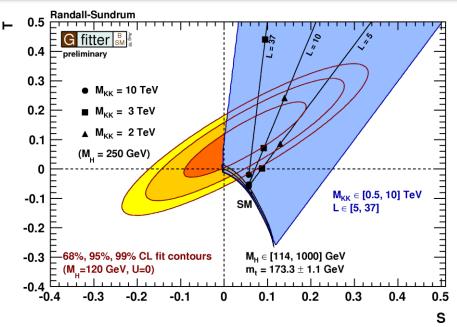




One Universal Extra Dimension

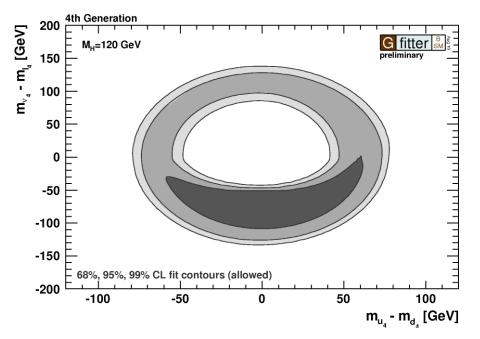
- all SM particles propagate in extra Dimension
- conservation of Kaluza-Klein (KK) parity
 → similar phenomenology as SUSY
- lightest KK state stable → Dark Matter candidate

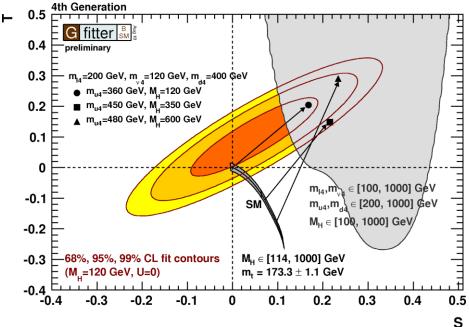



- parameters of UED model
 - $R^{\text{-1}}$ compactification scale (size of extra dimension) $m_{\text{KK}}\cong$ n/R
 - oblique parameters depend on M_H
- oblique parameters replaced by corrections from UED model [Gogoladze et al., Phys.Rev. D 74, 093012 (2006)] [Appelquist et al., Phys.Rev. D67 (2003) 055002]

Warped Extra Dimensions (Randall-Sundrum)

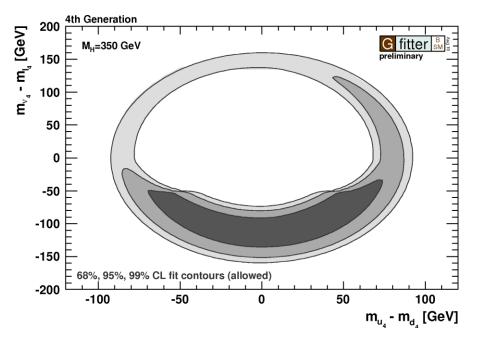
- introducing one extra dimension (ED) for solving the hierarchy problem
- RS model characterized by one warped ED confined by two three-branes
- one brane contains SM particles
- extension: SM particles allowed to propagate in bulk region
- observation: heavy Kaluza-Klein modes

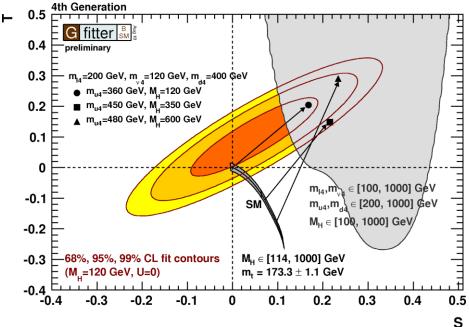



- parameters of RS model
 - M_{KK}: KK state
 - L: inverse warp factor, function of compactification radius
- oblique parameters replaced by corrections from RS model [S. Casagrande et al., JHEP10(2008)094]

Fourth Generation

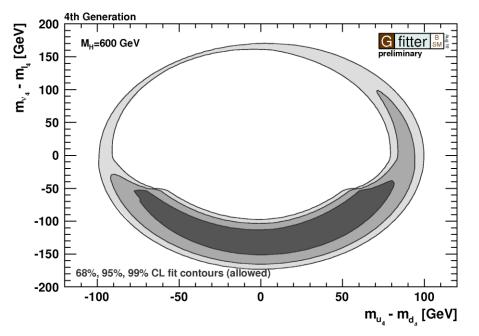
- motivation for fourth generation:
 - predicted by some GUT theories
 - can play an important role in electroweak symmetry breaking
- number of light neutrino (m_v < M_z/2) due to measurement of Z width

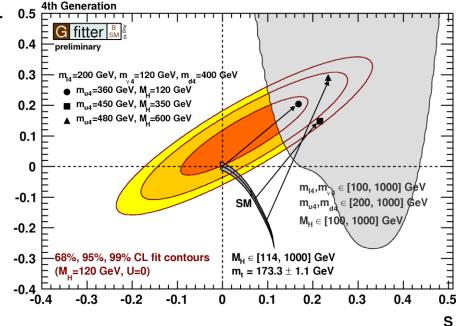



- mixing between first 3 generations and new generation neglected
- oblique parameters mostly sensitive to mass difference of new generation [Phys.Rev.D64, 053004 (2001)]

Fourth Generation

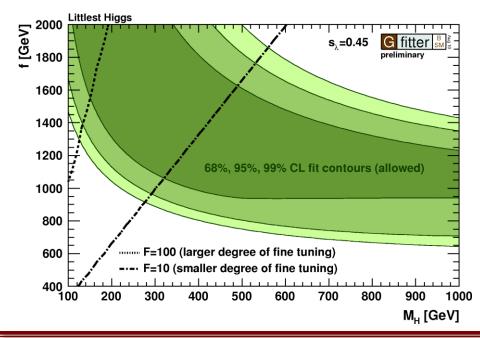
- motivation for fourth generation:
 - predicted by some GUT theories
 - can play an important role in electroweak symmetry breaking
- number of light neutrino (m_v < M_z/2) due to measurement of Z width

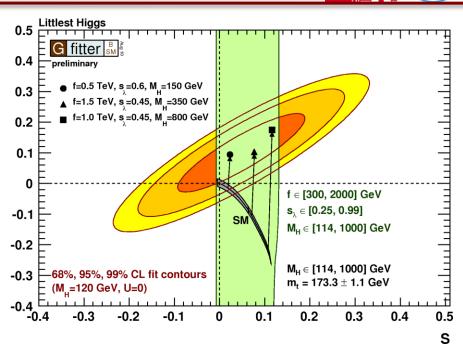



- mixing between first 3 generations and new generation neglected
- oblique parameters mostly sensitive to mass difference of new generation [Phys.Rev.D64, 053004 (2001)]

Fourth Generation

- motivation for fourth generation:
 - predicted by some GUT theories
 - can play an important role in electroweak symmetry breaking
- number of light neutrino (m_v < M_z/2) due to measurement of Z width





- mixing between first 3 generations and new generation neglected
- oblique parameters mostly sensitive to mass difference of new generation [Phys.Rev.D64, 053004 (2001)]

Littlest Higgs with T-Parity

- Higgs pseudo-Nambu-Goldstone boson ⊢
- new fermions and new gauge bosons
 - two new top states (T-odd $m_{T\text{-}}$ and T-even $m_{T\text{+}}$)
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables

UH

- parameters of LH model
 - f symmetry breaking scale (scale of new particles)
 - $s_{\lambda} \cong m_{T_{-}} / m_{T_{+}}$ ratio of masses in top sector
 - order one-coefficient δ_c (exact value depends on detail of UV physics)
 - treated as theory uncertainty in fit (Rfit) δ_c =-5...5
- oblique parameters replaced by corrections from LH model [Hubisz et al., JHEP 0601:135 (2006)]

Martin Goebel

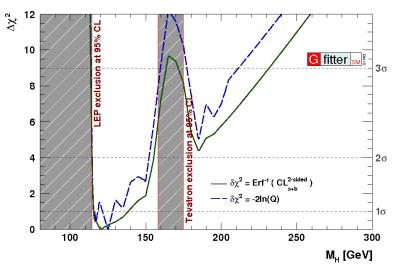
Conclusion

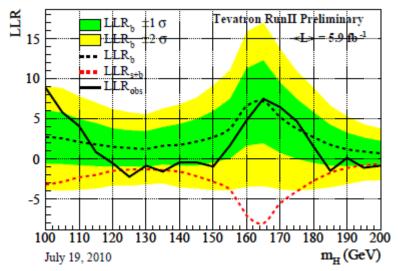
Gfitter Package

- flexible, generic C++ program including the statistical framework
- not shown SUSY, 2HDM
- results on <u>http://cern.ch/Gfitter</u>

Global SM Fit

- using state-of-the art predictions for the electroweak observables
- Toy Analysis of p-value: $p = 0.23 \pm 0.01 0.02$
- small Higgs masses are preferred from SM Fit
- N³LO determination of $\alpha_{s}(M_{Z}) = 0.1193 \pm 0.0028 \pm 0.0001$


Oblique Corrections


- SM extension allow heavy Higgs Boson
- more models implemented (2HDM, TechniColor, Inert Doublet Model, ADD, ...)

Martin Goebel

Interpretation of Direct Higgs Searches

- direct Higgs searches from LEP and Tevatron
 - using one-sided CL_{s+b}
 - sensitive to too few Higgs-like events
 - we are interested in any kind of deviation from "s+b" hypothesis
 - also too many Higgs-like events
 - transform one-sided CL_{s+b} into 2-sided $CL_{s+b}^{2-sided}$
 - compute contribution to χ^2 assuming symmetric PDF: $\delta\chi^2 = \text{Erf}^{-1}(1 - \text{CL}_{s+b}^{2-\text{sided}})$
- alternative: use of test statistics -2InQ
 - similar behavior, but deeper minimum
 - ⇒ slightly stronger constraint

