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Systematics

J. Heinrich and L. Lyons, Ann Rev of Nucl + 
Particle Science 57 (2007) 145

Lots of information on Systematics (and other 
topics) on CDF Statistics Committee web-site
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Random + Systematic Errors
Random/Statistical: Limited accuracy, Poisson counts   
                Spread of answers on repetition (Method of estimating)
Systematics: May cause shift, but not spread 

e.g. Pendulum       g = 4π2L/τ2,        τ = T/n
Statistical errors:  T, L
Systematics:        T, L
        Calibrate:  Systematic  Statistical
More systematics:
Formula for undamped, small amplitude, rigid, simple pendulum
Might want to correct to g at sea level:
         Different correction formulae

Ratio of g at different locations:   Possible systematics might cancel.
                                                     Correlations relevant
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Presenting result

Quote result as g ± σstat ± σsyst

Or combine errors in quadrature  g ± σ

Other extreme: Show all systematic contributions separately

Useful for assessing correlations with other measurements

Needed for using:

       improved outside information, 

       combining results

       using measurements to calculate something else. 
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Correlations and Error Matrix

Cov(x,y) ~ 0                                                     Cov(x,y) > 0     

N.B.   Correlations of errors, not of variables 

e.g. Period and length of pendulum.

   y                                                                   y

     x                                                                x
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Gaussian 
or Normal
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Learning to love the Error Matrix

• Introduction via 2-D Gaussian

• Understanding covariance

• Using the error matrix

           Combining correlated measurements
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Correlations

Basic issue:
For 1 parameter, quote value and error
For 2 (or more) parameters, 
   (e.g. gradient and intercept of straight line fit) 
   quote values + errors  + correlations

Just as the concept of variance for single variable is more 
general than Gaussian distribution, so correlation in 
more variables does not require multi-dim Gaussian

But simpler to introduce concept this way

Start with 2 variables with uncorrelated errors, and then 
introduce correlations in a simple way
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Element Eij - <(xi – xi) (xj – xj)>

Diagonal Eij = variances

Off-diagonal Eij = covariances
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Combination

Better to combine data than to combine 
results
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Likelihood approach
Want to combine n1 and n2

Likelihood method avoids problem

pdf(n) = e–μ μn /n!

LL(μ) = (e-μ μn1  /n1!) (e–μ μn2  /n2!) 

       =e-2μ μ(n1+n2) /n1! n2!

Maximises for μ = (n1+n2)/2

σμ
2  = (n1+n2)/4 

e.g. 1 and 100  50.5 ± 5
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Error estimate

N.B. Both χ2 and likelihood approaches give 
uncertainty on combined result which depends 
on individual errors, but not on their consistency

e.g.    0±3 and  2±3    1±2

          0±3 and 20±3  10±2

PDG have procedure to allow for spread

Cf: Errors on straight line fit
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To consider……

Is it possible to combine 

        1 ± 10    and 2 ± 9

to get a best combined value of 

                 6 ± 1    ?

Answer later.
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Difference between averaging and adding

Isolated island with conservative inhabitants
How many married people ?

Number of married men      = 100 ±  5 K
Number of married women =   80 ± 30 K

              Total = 180 ± 30 K
  Wtd average =   99 ±   5 K                    CONTRAST
              Total = 198 ± 10 K

GENERAL POINT: Adding (uncontroversial) theoretical input can 
improve precision of answer

     Compare “kinematic fitting”
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Combining correlated measurements
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Combined value outside range of 
individual measurements!

         σ1< σ2     Cov > 0

                             μ1                                    μ 

                μtrue
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Combined value outside range of 
individual measurements!

                             μ1          μ2                        μ 

                μtrue
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BLUE      Lyons, Gibaut + Clifford
  NIM A270 (1988) 110

Equivalent method of combining correlated 
measurements ai  ± σi with error matrix Eij  

    (Eii = σi
2)

Look for abest = Best  Linear Unbiassed Estimate

        abest = Σ αi ai         with Σαi = 1

Then minimise σ2 = Σαi Eij αj   with respect to α’s,

to get abest ,   σ2    and    χ2 =  ΣΣ(ai – abest ) Eij (aj-abest )

Because α’s are known, can calculate statistical 
and systematic errors for abest
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Examples of BLUE

1) Measurement 2 is identical to meas 1

        No improvement

2)  Data for meas 2 is subset of data for 1

         Meas 2 is ignored

3) General case σ1 < σ2, corrln coeff r

         r = 0, uncorrelated case

         r = σ2/σ1, second meas ignored

         r > σ2/σ1, second meas has negative weight

                       ‘Extrapolation’

                        Error0 as r1
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Small error

Example: Chi-sq Lecture 

xbest  outside x1  x2

ybest  outside y1  y2
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Best fit values both outside range

           y

                                                       

                                                        x
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Combining error matrices in Cosmology
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Non-Gaussian errors

Apart from Poisson, all above was for 

Gaussian errors.

Sometimes errors asymmetric e.g. lifetimes

ln(L) τbest
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Asymmetric errors

Barlow at:

PHYSTAT2003, page 250

PHYSTAT05,     page 56

arXiv:physics/0306138v1 [physics.data-an]

                           18 June 2003

Error combinations, weighted sums, χ2

BASIC PROBLEM: Meaning of asymmetric errors



38

Combining non-G measurements

For statistical errors, Likelihoods are great

With systematics:
INCORRECT: Combine likelihoods for statistical 

errors, and then find effect of systematics.
    Bad for uncertainties like
                  (σstat ,σsyst) = (10,1) and (1,10) 

Better to use profile L or Bayes
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Bayes 

Use Bayes’ theorem:
  p(φ,ν|data) ~ p(data|φ,ν) π(φ,ν)
  Bayes posterior       Likelihood    Bayes prior

π(φ,ν) ~ π(φ) π(ν)
π(ν) from subsidiary measurement
π(φ) from ……..  
      Prior knowledge better than prior ignorance.
      Constant prior?
Finally integrate p(φ,ν|data) over ν to get p(φ|data)
          ‘Marginalisation’.   Contrast ‘Profiling’ 

More in later lectures
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Combining p-values

As usual, better to combine data than to 
combine results
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Combining different p-values

Several results quote p-values for same effect: p1, p2, p3….. 

e.g. 0.9, 0.001, 0.3 ……..

What is combined significance?       Not just p1*p2*p3…..

If 10 expts each have p ~ 0.5, product ~ 0.001 and is clearly 
NOT correct combined p

    S = z  *    (-ln z)j /j!  ,        z = p1p2p3……. 

        (e.g. For 2 measurements, S = z * (1 - lnz) ≥ z  )

Slight problem: Formula is not associative

Combining {{p1 and p2}, and then p3} gives different answer  

          from {{p3 and p2}, and then p1} , or all together

Due to different options for “more extreme than x1, x2, x3”. 

∑
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0
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Combining different p-values
 
Conventional:

Are set of p-values consistent with H0?                        p2    

SLEUTH:

How significant is smallest p?

            1-S = (1-psmallest )n                                                                 
                                                

                                                             p1

                                                          p1 = 0.01                                          p1 = 10-4

                          p2 = 0.01             p2 = 1                 p2 = 10-4             p2 = 1

Combined S

Conventional      1.0 10-3            5.6 10-2                1.9 10-7             1.0 10-3             

SLEUTH             2.0 10-2            2.0 10-2                2.0 10-4               2.0 10-4
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