Systematics, Correlations and Combination

Louis Lyons Imperial College and Oxford

Goettingen
October 2010

With thanks to Arnulf and Thomas

Systematics

J. Heinrich and L. Lyons, Ann Rev of Nucl + Particle Science 57 (2007) 145

Lots of information on Systematics (and other topics) on CDF Statistics Committee web-site

Random + Systematic Errors

Random/Statistical: Limited accuracy, Poisson counts Spread of answers on repetition (Method of estimating) Systematics: May cause shift, but not spread
e.g. Pendulum $\quad g=4 \pi^{2} L / T^{2}, \quad T=T / n$

Statistical errors: T, L
Systematics: T, L
Calibrate: Systematic \rightarrow Statistical
More systematics:
Formula for undamped, small amplitude, rigid, simple pendulum
Might want to correct to g at sea level:
Different correction formulae

Ratio of g at different locations: Possible systematics might cancel.
Correlations relevant

Presenting result

Quote result as $g \pm \sigma_{\text {sat }} \pm \sigma_{\text {sjst }}$
Or combine errors in quadrature $\rightarrow \mathrm{g} \pm \sigma$

Other extreme: Show all systematic contributions separately
Useful for assessing correlations with other measurements
Needed for using:
improved outside information,
combining results
using measurements to calculate something else.

Correlations and Error Matrix

$\operatorname{Cov}(\mathrm{x}, \mathrm{y}) \sim 0$
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})>0$
N.B. Correlations of errors, not of variables
e.g. Period and length of pendulum.

$$
y=\frac{1}{\sqrt{2 w}} \frac{1}{\sigma} e x\left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Gaussian
 or Normal

Fig. 1.5. The solid curve is the Gaussian distribution of eqn (1.14). The distribution peaks at the mean μ, and its width is characterised by the parameter σ. The dashed curve is another Gaussian distribution with the same values of μ, but with σ twice as large as the solid curve. Because the normalisation condition (1.15) ensures that the area under the curves is the same, the height of the dashed curve is only half that of the solid curve at their maxima. The scale on the x-axis refers to the solid curve.

Significance of σ
i) RMS of Gaussian $=\sigma$

iii) Fractional area with $\mu \pm \sigma$ is 68%
iv) Height of $\max =1 / \sqrt{2 \pi} 5$

Learning to love the Error Matrix

- Introduction via 2-D Gaussian
- Understanding covariance
- Using the error matrix

Combining correlated measurements

COVARIANCE $(a, 6) \propto-\langle x\rangle$

$\langle x\rangle$ neg

Correlations

Basic issue:
For 1 parameter, quote value and error
For 2 (or more) parameters,
(e.g. gradient and intercept of straight line fit)
quote values + errors + correlations

Just as the concept of variance for single variable is more general than Gaussian distribution, so correlation in more variables does not require multi-dim Gaussian
But simpler to introduce concept this way

Start with 2 variables with uncorrelated errors, and then introduce correlations in a simple way

Gaussian in 2-variabies.

$$
\begin{aligned}
& P(x)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma_{x}} e^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}} \\
& P(y)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma_{y}} e^{-\frac{1}{2} y^{2} \sigma_{y}^{2}} \\
& x+y \text { uncorrelated } \Rightarrow{ }^{-\frac{1}{2}\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}\right)} \\
& P(x, y)=\frac{1}{2 \pi} \frac{1}{\sigma_{x} \sigma_{y}} e^{-1}
\end{aligned}
$$

Down on $P(0,0)$ by $e^{-\frac{1}{2}}$ when

$$
\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{j}^{2}}=1
$$

Element $\mathrm{E}_{\mathrm{i}}-\left\langle\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{j}}-\overline{\mathrm{x}}_{\mathrm{j}}\right)>\right.$
Diagonal $\mathrm{E}_{\mathrm{i}}=$ variances

Speritic erample

$$
\sigma_{x}=\frac{\sqrt{2}}{4}=354 \quad \sigma_{y}=\frac{\sqrt{2}}{2}=707
$$

Then fowern of $e^{-\frac{1}{2}}$ when

$$
8 x^{2}+2 y^{2}=1
$$

Now intorduce CORRERATLONS by 30° notn

$$
\begin{aligned}
& \frac{1}{2}\left[13 x^{\prime 2}+6 \sqrt{3} x^{\prime} y^{\prime}+7 y^{\prime 2}\right]=1 \\
& \left(\begin{array}{cc}
\frac{13}{2} & \frac{3 \sqrt{3}}{2} \\
3 \frac{\sqrt{3}}{2} & \frac{y}{2}
\end{array}\right)=\begin{array}{c}
\text { Inverse Emor } \\
\text { Matias }
\end{array} \\
& \frac{1}{32} \times\left(\begin{array}{cc}
7 & -3 \sqrt{3} \\
-3 \sqrt{3} & 13
\end{array}\right)=\text { Emor Matri }
\end{aligned}
$$

$\left.\begin{array}{l}\sigma_{x} \\ \sigma_{y}\end{array}\right\}$ constand \quad covariance $\left(\begin{array}{ll}\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\ \rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}\end{array}\right)$

USING THE ERROR MATRIX
(i) Function of varables

$$
y=y\left(x_{a}, x_{b}\right)
$$

Given x_{a}, x_{6} emp malnix, whot is σ_{y} ?
Differentate, square, average

$$
\begin{aligned}
& \overline{\delta y^{2}}=\left(\frac{\partial y}{\partial x_{a}}\right)^{2} \overline{\delta x_{a}^{2}}+\left(\frac{\partial y}{\partial x_{b}}\right)^{2} \overline{\delta x_{b}^{2}}+2 \frac{\partial y}{\partial x_{a}} \frac{\partial y}{\partial x_{b}} \overline{\delta x} \\
& \text { zeroif } \\
& \begin{array}{l}
x_{n}, x_{b} \\
\text { meonviated }
\end{array} \\
& \text { OR } \\
& \text { unconviated }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{y}^{2}=\tilde{D E D} \\
& \begin{array}{l}
\text { Derivative } \\
\text { vector }
\end{array}
\end{aligned}
$$

(ii) Change of varables

$$
\begin{aligned}
& x_{a}=x_{a}\left(p_{i}, b_{j}\right) \\
& x_{b}=x_{b}\left(p_{i}, p_{j}\right)
\end{aligned}
$$

e.g. Cartesion \Rightarrow polars
or Pouits in $x, y \Rightarrow m, c$ of striagher
line fit
Given $\left(p_{i}, p_{j}\right)$ enor makix $\Rightarrow\left(x_{i}, x_{j}\right)$ enor manix Differentiote, $\delta x_{a} \delta x_{b}$, wreage

$$
\delta x_{a}=\frac{\partial x_{a}}{\partial p_{i}} \delta p_{i}+\frac{\partial x_{a}}{\partial p_{j}} \delta p_{j} \quad\left(+\sin f_{x_{b}} x_{i}\right.
$$

Then $\overline{\delta x_{a}^{2}}=\left(\frac{\partial x_{a}}{\partial p_{i}}\right)^{2} \overline{\delta p_{i}^{2}}+\left(\frac{\partial x_{a}}{\partial p_{j}}\right)^{2} \overline{\delta p_{j}^{2}}+2 \frac{\partial x_{a}}{\partial p_{i}} \frac{\partial x_{a}}{\partial p_{j}} \overline{\delta p_{i} \delta k_{j}}$

$$
\begin{aligned}
& \delta \overline{x_{a} \delta x_{b}}=\frac{\partial x_{a}}{\partial \eta_{i}} \frac{\partial x_{b}}{\partial p_{i}} \overline{\delta_{i}^{2}}+\frac{\partial x_{a}}{\partial x_{j}} \frac{\partial x_{i}}{\partial p_{j}} \overline{\delta p_{j}^{2}}+\left(\frac{\partial x_{a}}{\partial p_{i}} \frac{\partial x_{b}}{\partial p_{j}}+\frac{\partial x_{a}}{\partial k_{k}} \frac{\partial x_{k}}{\delta k_{k}}\right. \\
& \times \overline{\delta p_{i} \delta l_{j}} \\
& +\overline{\delta x_{b}^{2}} \text { lixe } \overline{\delta x_{a}^{2}}
\end{aligned}
$$

$N . B$. Change of varitles does not have to be $N \rightarrow N$ e.g. strigitur line fix involes $N \rightarrow 2$

Then i) a ii) ore both examples of $N \rightarrow M(M \leqslant N)$

$$
\begin{aligned}
& E_{x}=\widetilde{T} E_{p} T \text { BEWARE! }
\end{aligned}
$$

Combination

Better to combine data than to combine results

$$
\begin{aligned}
& \text { COMBINING EXPERIMENTS } \\
& x_{i}=\sigma_{i} \text { (uncorrelated) } \\
& \left.\begin{array}{l}
\hat{x}=\frac{\sum x_{i} / \sigma_{i}^{2}}{\sum 1 / \sigma_{i}^{2}} \\
1 / \sigma^{2}=\Sigma 1 / \sigma_{i}^{2}
\end{array}\right\} \begin{array}{l}
\text { From } S=\sum\left(x_{i}-\hat{x}\right)^{2} / \sigma_{i}^{2} \\
\text { Minimise } S \\
\sigma \text { from } S_{\text {min }}+1
\end{array} \\
& \text { OR Prolagote ervirs from } \hat{x}=\ldots \text {. }
\end{aligned}
$$

Define $\omega_{i}=1 / \sigma_{i}^{2}=$ weight \sim information content

$$
\begin{aligned}
& \hat{x}=\sum \omega_{i} x_{i} / \sum \omega_{i} \\
& W=\sum \omega_{i}
\end{aligned}
$$

Example: Equal $\sigma_{i} \Rightarrow \hat{x}=\bar{x}$

$$
\sigma=\sigma_{i} / \sqrt{n}
$$

BEWARE

$$
\left.\begin{array}{c}
100 \pm 10 \\
1 \pm 1
\end{array}\right\} \rightarrow \begin{gathered}
2 \pm 1 \\
\text { or } 50.5 \pm 5
\end{gathered} ?
$$

Likelihood approach

Want to combine n_{1} and n_{2}
Likelihood method avoids problem
$\operatorname{pdf}(n)=e^{-\mu} \mu^{n} / n!$

$$
\begin{aligned}
L(\mu) & =\left(e^{-\mu} \mu^{m 1} / n_{1}!\right)\left(e^{-\mu} \mu^{\text {r2 }} / n_{2}!\right) \\
& =e^{-2 \mu} \mu^{(n+1+2)} \quad / n_{1}!n_{2}!
\end{aligned}
$$

Maximises for $\mu=\left(n_{1}+n_{2}\right) / 2$
$\sigma_{\mu}{ }^{2}=\left(n_{1}+n_{2}\right) / 4$
e.g. 1 and $100 \rightarrow 50.5 \pm 5$

Error estimate

N.B. Both χ^{2} and likelihood approaches give uncertainty on combined result which depends on individual errors, but not on their consistency
e.g. 0 ± 3 and $2 \pm 3 \rightarrow 1 \pm 2$

$$
0 \pm 3 \text { and } 20 \pm 3 \rightarrow 10 \pm 2
$$

PDG have procedure to allow for spread

Cf: Errors on straight line fit

To consider......

Is it possible to combine

$$
1 \pm 10 \quad \text { and } 2 \pm 9
$$

to get a best combined value of

$$
6 \pm 1 \quad ?
$$

Answer later.

Difference between averaging and adding

Isolated island with conservative inhabitants How many married people ?

Number of married men $=100 \pm 5 \mathrm{~K}$
Number of married women $=80 \pm 30 \mathrm{~K}$

GENERAL POINT: Adding (uncontroversial) theoretical input can improve precision of answer
Compare "kinematic fitting"

Combining correlated measurements

If $a_{i}=\sigma_{i}$ are independent:
Minimise $S=\sum\left(\frac{a_{i}-\hat{a}}{\sigma_{i}}\right)^{2}$

$$
\Rightarrow \hat{a}=\frac{\sum a_{i} v_{i}}{\sum v_{i}} \quad \omega_{i}=1 / \sigma_{i}^{2}
$$

Now $e_{i} \pm \sigma_{i}$ are creel ted with error matrix $\underline{\underline{E}}$

$$
\begin{gathered}
\underline{\underline{E}}=\left(\begin{array}{ccc}
\sigma_{1}^{2} \operatorname{cov}(1,2) & \operatorname{cov}(1,3) & \cdots \\
\operatorname{cov}(1,2) & \sigma_{2}^{2} & \operatorname{cor}(2,3) \\
\cdots & \cdots & \cdots
\end{array}\right) \\
S=\sum_{i, j}\left(a_{i}-\hat{a}\right){\underset{i}{i j}}_{E_{i j}^{-1}}^{\substack{i}} \begin{array}{c}
\text { INVORSN ERROR } \\
\text { MATRIX }
\end{array}
\end{gathered}
$$

N.B. a CAN LIE OUTSIDE a :

$$
\sigma_{a} \rightarrow 0 \text { as } \rho \rightarrow \pm 1
$$

$\underline{E}^{-1}=\left(\begin{array}{cccc}1 / \sigma_{1}^{2} & 0 & 0 & \cdots \\ 0 & 1 / \sigma_{2}^{2} & 0 \\ \vdots & \vdots & \vdots\end{array}\right)$ FOR UN CORR (RATES

Combined value outside range of individual measurements!

$$
\sigma_{1}<\sigma_{2} \quad \operatorname{Cov}>0
$$

Combined value outside range of individual measurements!

BLUE Lyons, Gibaut + Clifford NIM A270 (1988) 110

Equivalent method of combining correlated measurements $a_{i} \pm \sigma_{i}$ with error matrix $E_{i j}$

$$
\left(\mathrm{E}_{\mathrm{i}}=\sigma_{\mathrm{i}}^{2}\right)
$$

Look for $\mathrm{a}_{\text {bet }}=$ Best Linear Unbiassed Estimate

$$
a_{\text {bett }}=\Sigma \alpha_{i} a_{i} \quad \text { with } \sum \alpha_{i}=1
$$

Then minimise $\sigma^{2}=\Sigma \alpha_{i} E_{i j} \alpha_{j}$ with respect to α 's,
to get $a_{\text {bett }}, \quad \sigma^{2}$ and $\chi^{2}=\Sigma \Sigma\left(a_{i}-a_{b x t}\right) E_{i j}\left(a_{j}-a_{b x t}\right)$

Because a's are known, can calculate statistical and systematic errors for $\mathrm{a}_{\text {bet }}$

Examples of BLUE

1) Measurement 2 is identical to meas 1 No improvement
2) Data for meas 2 is subset of data for 1 Meas 2 is ignored
3) General case $\sigma_{1}<\sigma_{2}$, corrln coeff r $r=0$, uncorrelated case $\mathrm{r}=\sigma_{2} / \sigma_{1}$, second meas ignored $\mathrm{r}>\sigma_{2} / \sigma_{1}$, second meas has negative weight
'Extrapolation'
Error $\rightarrow 0$ as $r \rightarrow 1$

MORE COMBINNL:
several pairs of corrected mends.

$$
\left.\begin{array}{l}
\left(x_{i}, y_{i}\right) \text { with } E_{i}=\left(\begin{array}{cc}
\sigma_{x}^{2} & \operatorname{cov} \\
\operatorname{cov} & \sigma_{y}^{2}
\end{array}\right) \\
j=\sum_{i}\left\{\left(x_{i}-\hat{x}\right)^{2} E_{11}^{-1} i+\left(y_{i}-\hat{y}\right)^{2} E_{22}^{-1} i\right. \\
+2\left(x_{i}-\hat{x}\right)\left(y_{i}-\hat{y}\right) E_{12, i}^{-1}
\end{array}\right\} .
$$

ice result: -
Inverse error matrix on result \hat{x}, \hat{y}

$$
=\sum_{i} E_{i}^{-1}
$$

Cf $\frac{1}{\sigma^{2}}=\sum \frac{1}{\sigma_{i}^{2}}$ for $\sin { }^{2}$
uncormbered meas.

Small error
Example: Chi-sq Lecture

$$
\begin{aligned}
& \mathrm{x}_{\text {bet t }} \text { outside } \mathrm{x}_{1} \rightarrow \mathrm{x}_{2} \\
& \mathrm{y}_{\text {bet t }} \text { outside } \mathrm{y}_{1} \rightarrow \mathrm{y}_{2}
\end{aligned}
$$

COVARIANCE $(a, 6) \propto-\langle\infty$

Best fit values both outside range

Combining error matrices in Cosmology

Non-Gaussian errors

Apart from Poisson, all above was for
Gaussian errors.
Sometimes errors asymmetric e.g. lifetimes

Asymmetric errors

Barlow at:
PHYSTAT2003, page 250
PHYSTAT05, page 56
arXiv:physics/0306138v1 [physics.data-an] 18 June 2003
Error combinations, weighted sums, χ^{2}

BASIC PROBLEM: Meaning of asymmetric errors

Combining non-G measurements

For statistical errors, Likelihoods are great

With systematics:
INCORRECT: Combine likelihoods for statistical errors, and then find effect of systematics.
Bad for uncertainties like

$$
\left(\sigma_{\text {stat }}, \sigma_{\text {syst }}\right)=(10,1) \text { and }(1,10)
$$

Better to use profile L or Bayes

Bayes

Use Bayes' theorem:

$\mathrm{p}(\varphi, v \mid$ data $) \sim \mathrm{p}($ data $\mid \varphi, v) \pi(\varphi, v)$
Bayes posterior Likelihood Bayes prior
$\pi(\varphi, \nu) \sim \pi(\varphi) \pi(\nu)$
$\pi(v)$ from subsidiary measurement
$\pi(\varphi)$ from
Prior knowledge better than prior ignorance.
Constant prior?
Finally integrate $p(\varphi, v \mid$ data $)$ over v to get $p(\varphi \mid$ data $)$
'Marginalisation'. Contrast 'Profiling'

More in later lectures

Combining p-values

As usual, better to combine data than to combine results

Combining different p-values

Several results quote p-values for same effect: $p_{1}, p_{2}, p_{3} \ldots$. e.g. 0.9, $0.001,0.3 \ldots . . .$.

What is combined significance? Not just $p_{4} p_{2} p_{3} \ldots$.
If 10 expts each have $p \sim 0.5$, product ~ 0.001 and is clearly NOT correct combined p

$$
S=z * \sum_{j=:}^{n-1}(-\ln z)^{j} / j!, \quad z=p_{1} p_{2} p_{3} \ldots \ldots
$$

(e.g. For 2 measurements, $S=z$ * $(1-\operatorname{lnz}) \geq z$)

Slight problem: Formula is not associative
Combining $\left\{\left\{p_{1}\right.\right.$ and $\left.p_{2}\right\}$, and then $\left.p_{3}\right\}$ gives different answer
from $\left\{\left\{p_{3}\right.\right.$ and $\left.p_{2}\right\}$, and then $\left.p_{1}\right\}$, or all together
Due to different options for "more extreme than $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$.

Combining different p-values

Conventional:
Are set of p -values consistent with H 0 ? SLEUTH:
How significant is smallest p?

$$
1-\mathrm{S}=\left(1-\mathrm{p}_{\text {suldet }}\right)^{\mathrm{n}}
$$

$$
p_{1}=0.01
$$

$$
\mathrm{p}_{1}=10^{4}
$$

$$
\mathrm{p}_{2}=0.01
$$

$$
\mathrm{p}_{2}=1
$$

$$
p_{2}=10^{4}
$$

$$
\mathrm{p}_{2}=1
$$

Combined S

Conventional	1.010^{-3}	5.610^{-2}	1.910^{-7}	1.010^{-3}
SLEUTH	2.010^{-2}	2.01^{-2}	2.00^{-4}	2.010^{4}

