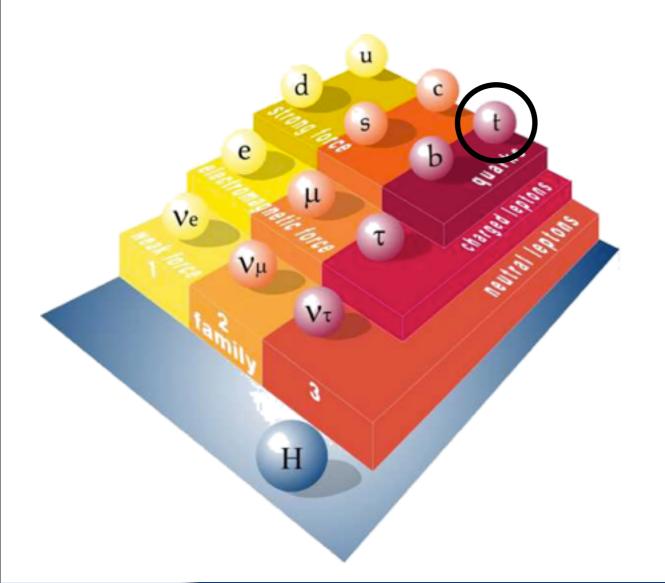


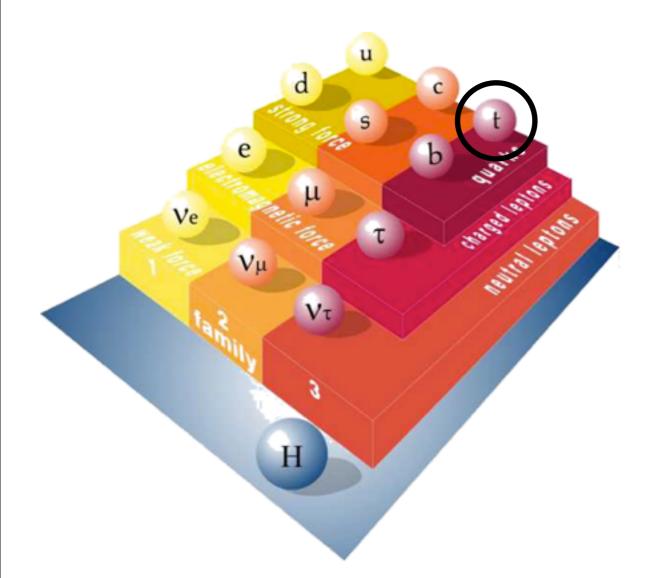
Real life combination

World average top quark mass

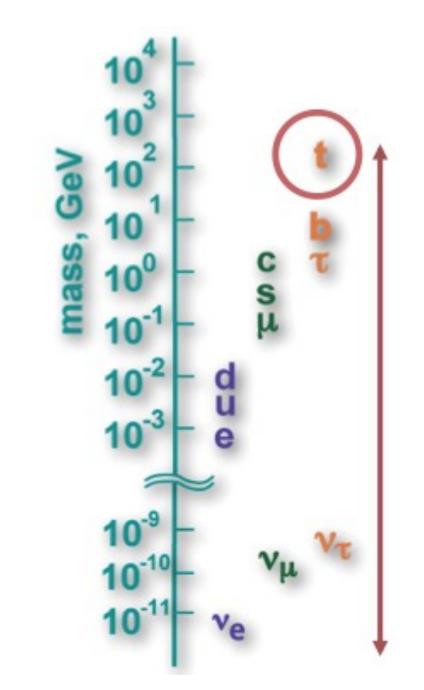

Elizaveta Shabalina II. Physikalisches Institut, Universität Göttingen

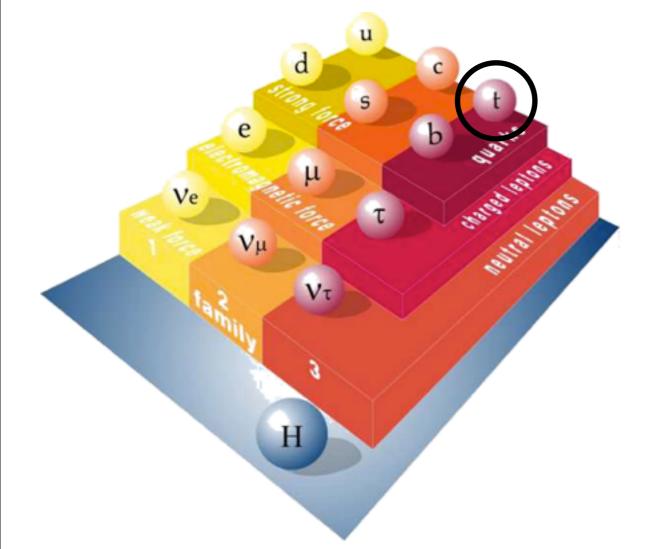
Helmholtz Alliance Statistics School, 17-20 October, Gottingen

Top quark mass Tevatron combination The method The measurements Uncertainties Correlations Results Exercises


Top quark mass

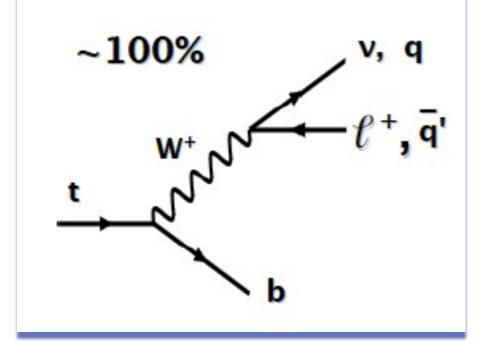
E.Shabaina -- Combination Tutorial

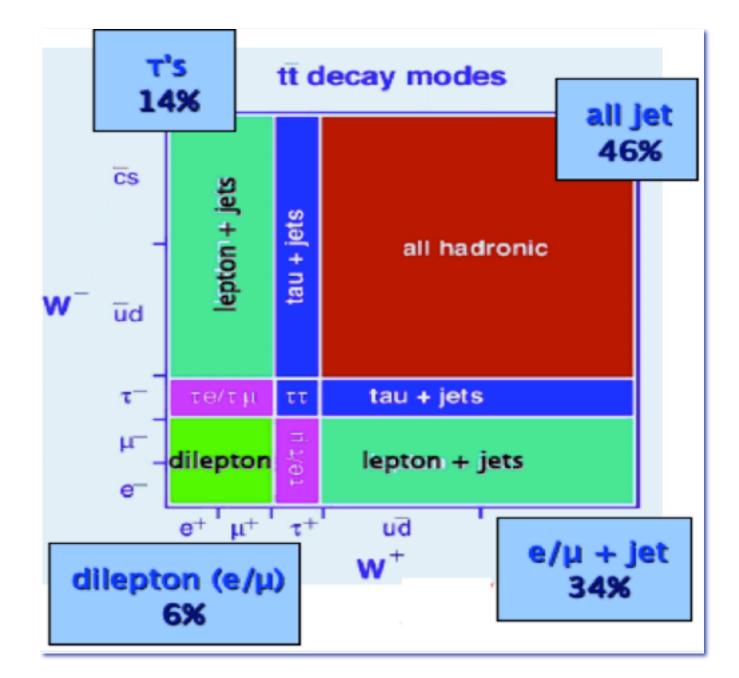

Discovered at Fermilab in 1995


E.Shabaina -- Combination Tutorial

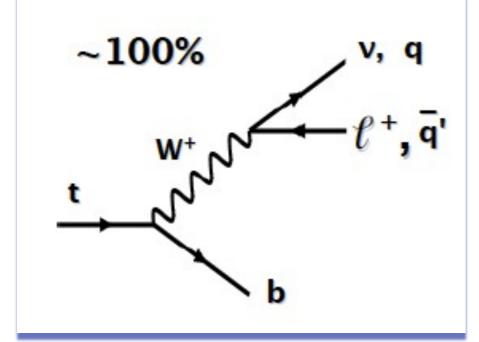
Discovered at Fermilab in 1995

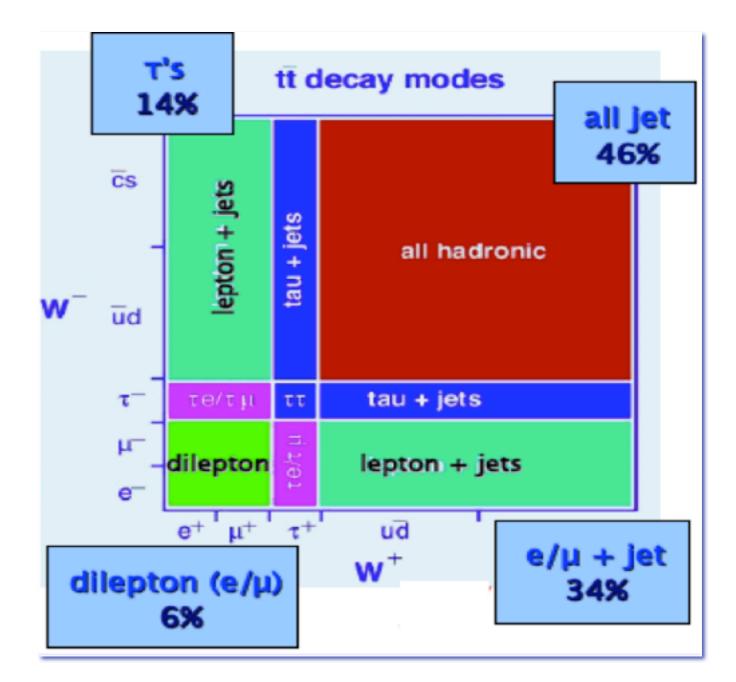
As heavy as the atom of gold


E.Shabaina -- Combination Tutorial


Monday, October 18, 2010

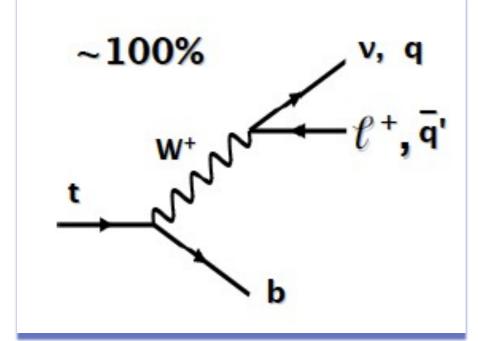
In Standard Model


W decay mode defines top pair final state

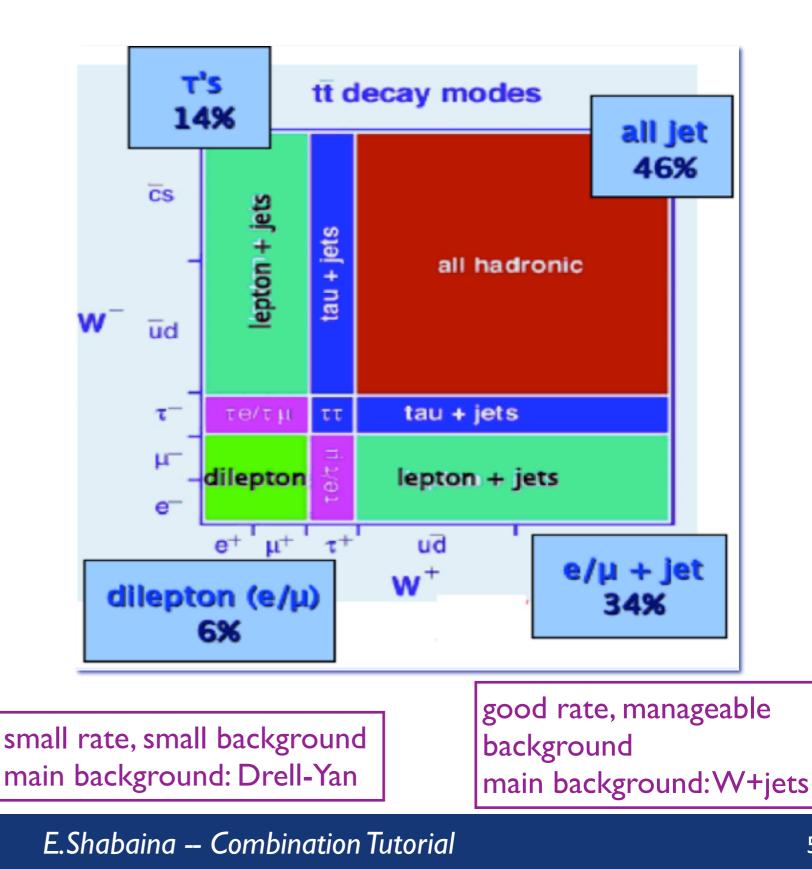


In Standard Model

W decay mode defines top pair final state

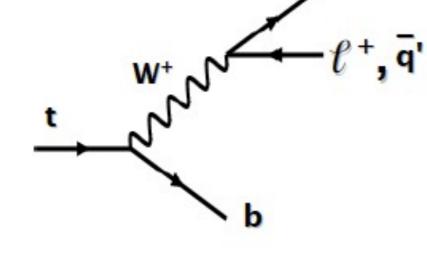

small rate, small background main background: Drell-Yan

E.Shabaina -- Combination Tutorial

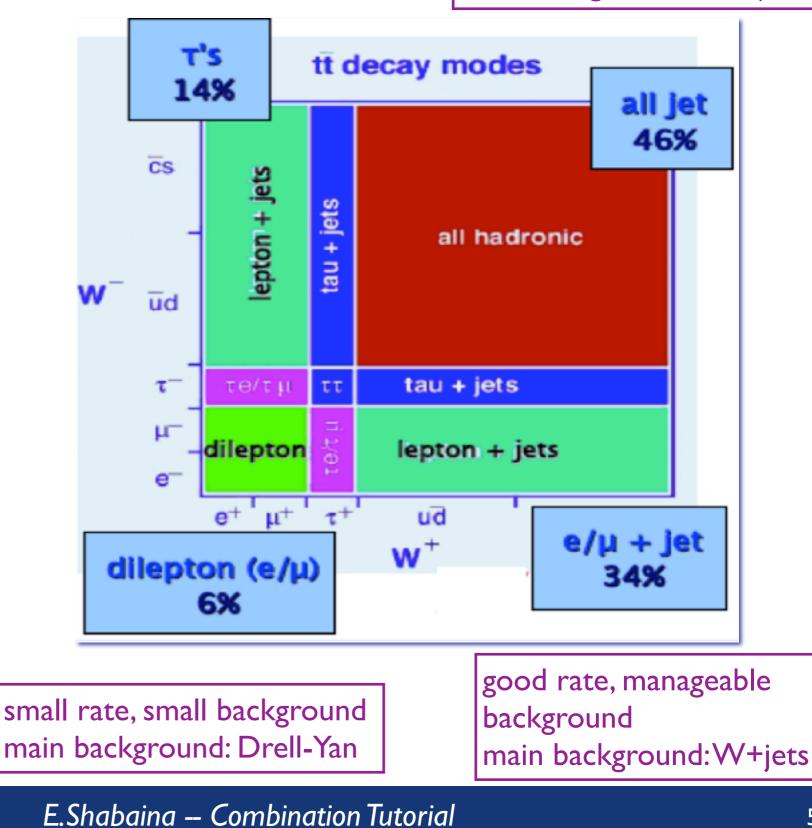

Monday, October 18, 2010

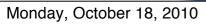
In Standard Model

W decay mode defines top pair final state



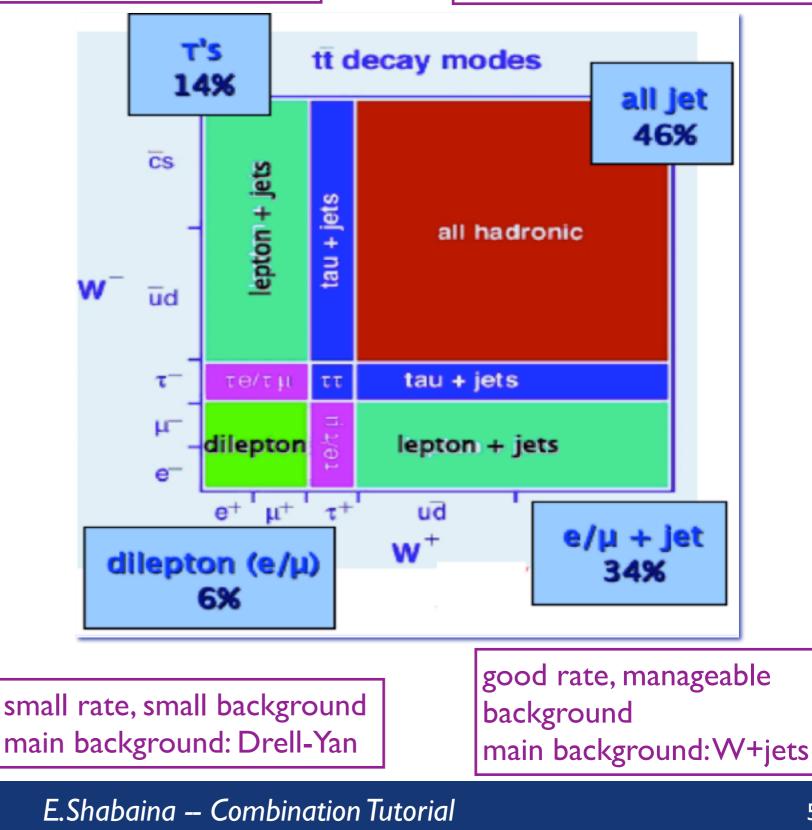
GEORG-AUGUST-UNIVERSITÄT Göttingen


Top quark decay


high rate, high background main background: multijet

In Standard Model

W decay mode defines top pair final state



small rate, high background backgrounds: multijet, W+jets high rate, high background main background: multijet

In Standard Model ~100% v, q w⁺√ t b

W decay mode defines top pair final state

Monday, October 18, 2010

Top quark mass

$$M_{W} = \sqrt{\frac{\pi \alpha}{\sqrt{2}G_{F}}} \frac{1}{\sin \theta_{W} \sqrt{1 - \Delta r}}$$
$$\cos \theta_{W} = \frac{M_{W}}{M_{Z}}$$

- Free parameter of the SM
- Together with W mass constrains SM Higgs mass
- Provides guideline for SM Higgs searches
- Constraint on Higgs mass can point to physics beyond the SM

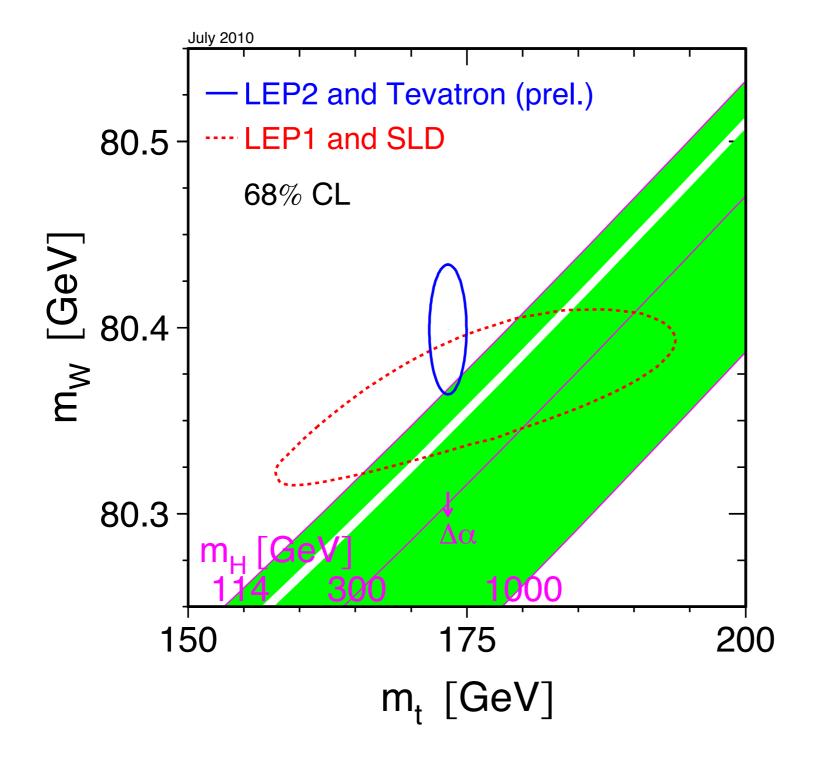
 $\Delta r_{t} \sim m_{t}^{2}$

 $\Delta r_{Higgs} \sim \ln(m_{H}^{2})$

Top quark mass

$$M_{W} = \sqrt{\frac{\pi \alpha}{\sqrt{2}G_{F}}} \frac{1}{\sin \theta_{W} \sqrt{1 - \Delta r}}$$
$$\cos \theta_{W} = \frac{M_{W}}{M_{Z}}$$

- Free parameter of the SM
- Together with W mass constrains SM Higgs mass
- Provides guideline for SM Higgs searches
- Constraint on Higgs mass can point to physics beyond the SM


$$\Delta r_{t} \sim m_{t}^{2}$$
 $\Delta r_{Higgs} \sim \ln(m_{H}^{2})$

The most precisely known top quark property

E.Shabaina -- Combination Tutorial

EW fit constraints

Updated inputs: m_{top}, W width

M_H<158 GeV ignoring direct limit

M_H<185 GeV including 114 GeV LEP limit

$$M_{\rm H} = 89^{+35}_{-26} \, {\rm GeV}$$

EW fits alone without theory uncertainties

Tevatron combination The method

- CDF and D0 have been combining their top quark mass measurements for over 10 years
 - ▶ first: FERMILAB-TM-2084 (1999)
 - last: arXiv:1007.3178v1 (July 2010)
 - updated once a year when both experiments have major improvements
- Method unchanged
 - BLUE (Best Linear Unbiased Estimator)
- Details and challenges

Well established methodology widely used throughout HEP

L.Lyons, D.Gibaut, P.Clifford, NIM A270 (1988), A.Valassi, NIM A500 (2003)

- Allows combination of correlated measurements of one or more parameters
- Yields unbiased estimate of parameter with the smallest variance
- Produces a fit χ^2 to evaluate consistency of inputs
- Provides clean way to breakdown uncertainties
- Measurement correlations are required as input
- Assumes all uncertainties Gaussian distributed

BLUE

Inputs

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} \qquad M = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \rho_{13}\sigma_1\sigma_3 & \cdots & \rho_{1N}\sigma_1\sigma_N \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \rho_{23}\sigma_2\sigma_3 & & \\ \rho_{13}\sigma_1\sigma_3 & \rho_{23}\sigma_2\sigma_3 & \sigma_3^2 & & \\ \vdots & & \ddots & \\ \rho_{1N}\sigma_1\sigma_N & & & \sigma_N^2 \end{pmatrix}$$

• Output

$$\hat{x} = \sum_{i=1}^{N} w_i x_i \qquad \qquad \sigma_{\hat{x}}^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} M_{ij} w_i w_j$$

• where $w = M^{-1}U/(U_T M^{-1}U)$

$$\chi^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} (\hat{x} - x_{i})(\hat{x} - x_{j})M_{ij}^{-1}$$

E.Shabaina -- Combination Tutorial

Decompose total uncertainty into a set of contributions (e.g. stat, signal model, bckg model etc)

 $M = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \cdots \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \\ \vdots & \ddots \end{pmatrix}_{\text{Stat}} + \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \cdots \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \\ \vdots & \ddots \end{pmatrix}_{\text{Signal}} + \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \cdots \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \\ \vdots & \ddots \end{pmatrix}_{\text{Bgnd}} + \dots$

- Evaluate statistical correlations using MC pseudo-experiments
- Systematic correlations
 - often hard, assign $|\rho_{ij}|=0$ or I

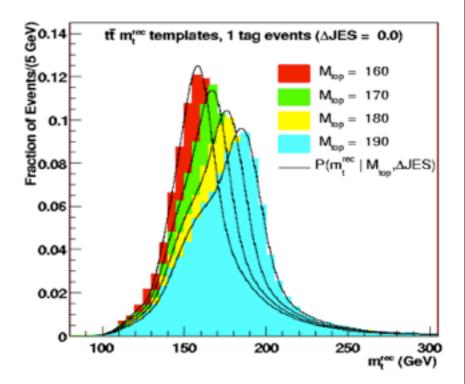
Tevatron combination

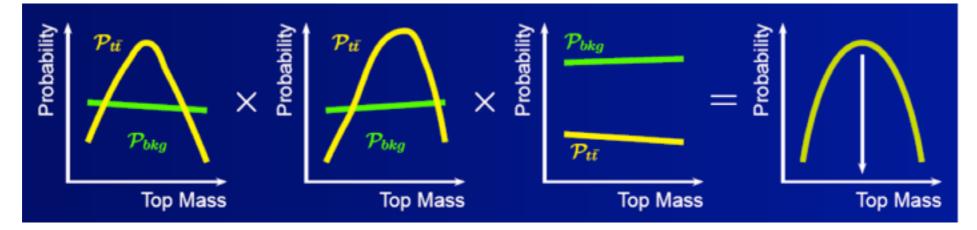
The measurements

Uses II input measurements

- 5 published Run I results
 - CDF: I+jt (lepton+jets channel), di-I (dilepton channel), allh (all hadronic channel)
 - D0: l+jt, di-l
- 4 CDF Run II results
 - Iatest and greatest lj+t, di-l, allh
 - published Lxy (l+jets channel but uses b decay length)
- 2 D0 Run II results
 - Iatest and greatest I+jt, dil

and I5 separate uncertainty categories



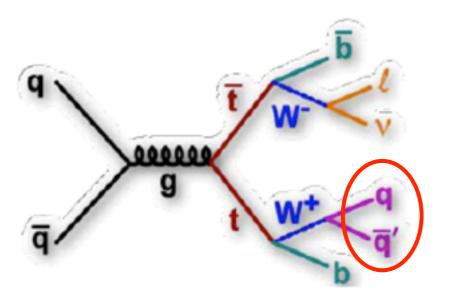

Mass extraction methods

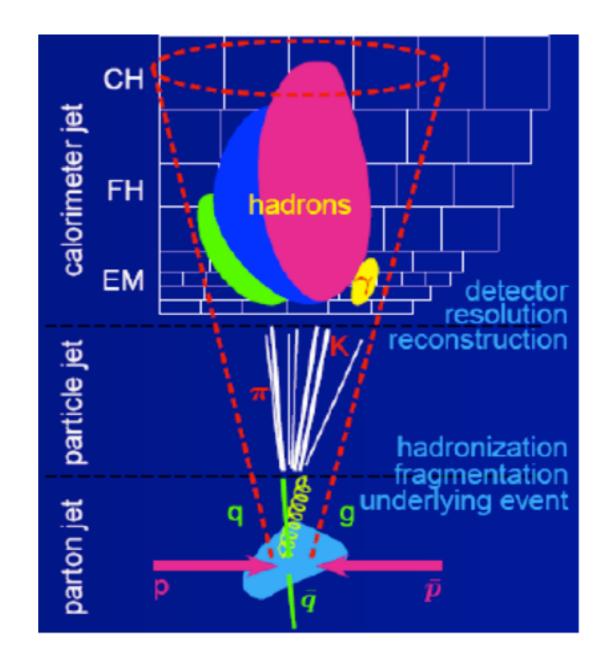
Template method

- Choose variable strongly correlated with the top mass
- Compare data to MC with different mass hypothesis
- Matrix element method

- Calculate probability for event to be signal or background as a function of top mass
- Multiply event probabilities to extract the most likely mass

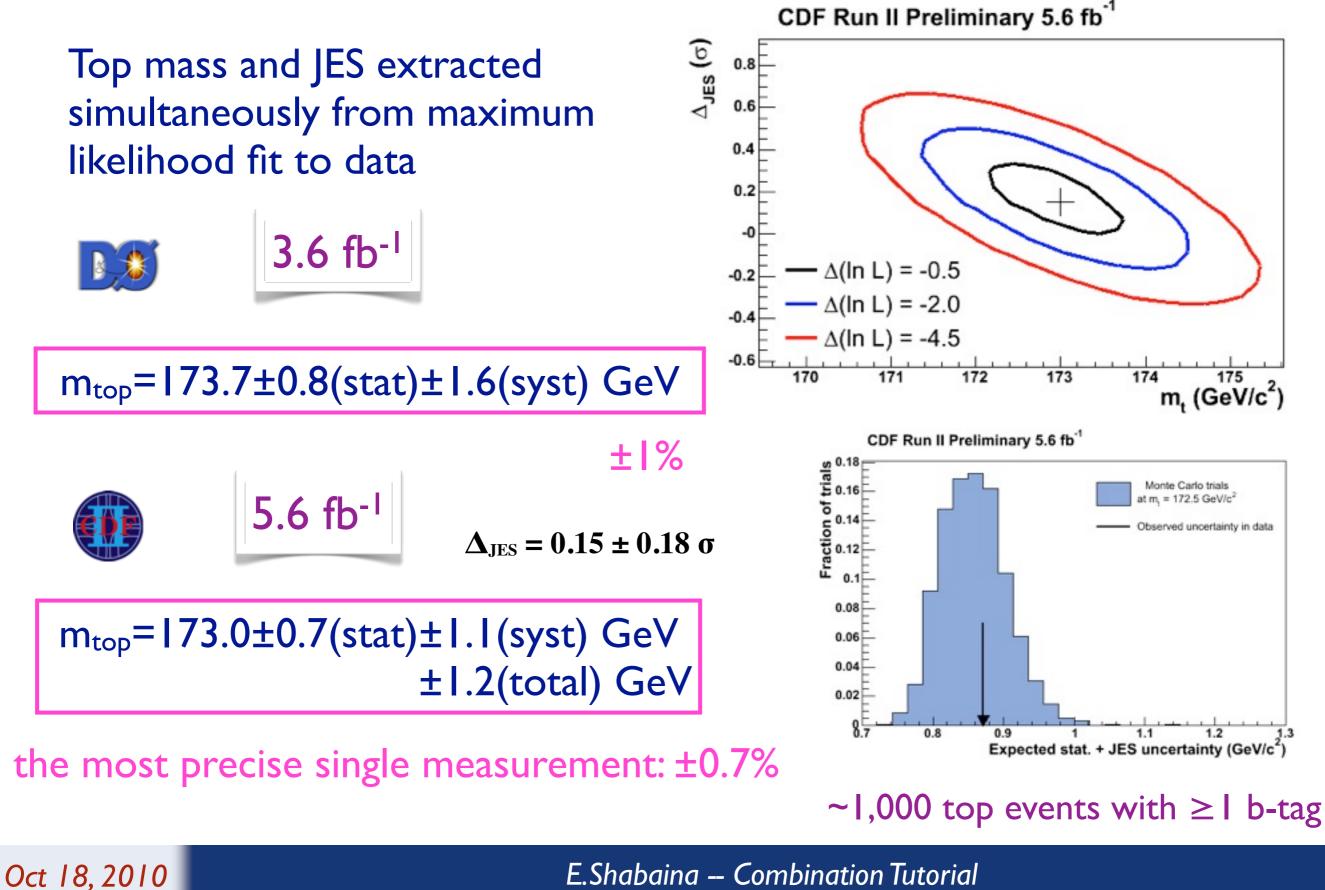
Maximizes statistical power by using full event information




E.Shabaina -- Combination Tutorial

Experimental challenges

- only jets can be measured
- clean mapping between reconstructed objects and partons
- jet energy scale calibration to particle level
 - dominating uncertainty
- in-situ calibration using hadronic W mass



Jet scale used to be severely limiting factor for top quark mass measurement

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

lepton+jets channel

Monday, October 18, 2010

E.Shabaina -- Combination Tutorial

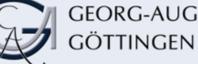

Ready to combine?

Figure 6: Calibrated results of the 2D analysis on Run IIb data.

Source	Uncertainty on top mass in Run IIb (GeV)	Uncertainty on top mass in Run IIa (GeV)
Higher Order Effects	± 0.25	± 0.25
ISR/FSR	± 0.26	± 0.40
Hadronization and UE	± 0.58	± 0.58
Color Reconnection	± 0.40	± 0.40
Multiple Hadron Interactions	± 0.07	± 0.01
Background Modeling	± 0.03	± 0.04
W HF factor	± 0.07	± 0.09
b-Modeling	± 0.09	± 0.03
PDF Uncertainty	± 0.24	± 0.14
Residual JES Uncertainty	± 0.21	± 0.10
Relative b/Light Response	± 0.81	± 0.83
Sample-Dependent JES	± 0.56	± 0.56
b-Tagging Efficiency	± 0.08	± 0.15
Trigger Efficiency	± 0.01	± 0.19
Lepton Momentum Scale	± 0.17	± 0.17
Jet Identification Efficiency	± 0.26	± 0.26
Jet Energy Resolution	± 0.32	± 0.03
QCD Background	± 0.14	± 0.14
Signal Fraction	± 0.10	± 0.09
Muon Resolution	-	± 0.10
Signal Contamination	-	± 0.13
MC Calibration	± 0.20	± 0.26
Total	± 1.41	± 1.43

CDF Run II Preliminary, 5.6 fb⁻¹

Systematic source	Systematic uncertainty (GeV/c^2)
Calibration	0.10
MC generator	0.37
ISR and FSR	0.15
Residual JES	0.49
b-JES	0.26
Lepton P_T	0.14
Multiple hadron interactions	0.10
PDFs	0.14
Background modeling	0.34
Color reconnection	0.37
Total	0.88

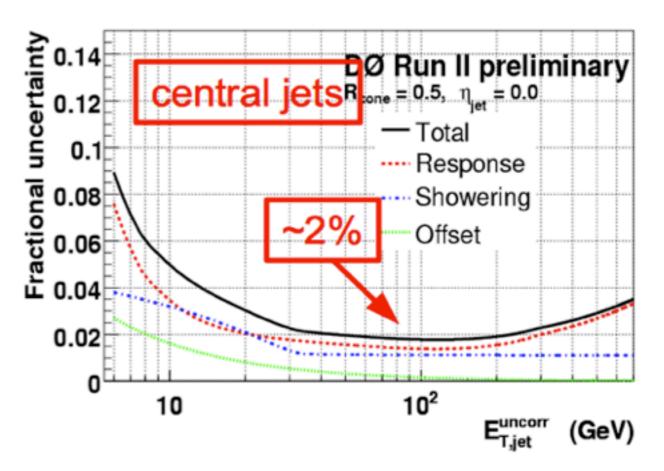
 $m_{top} = 173.0 \pm 0.7(stat) \pm 0.6(JES) \pm 0.9(syst) GeV$

Tevatron combination

Uncertainties

Common categories

- Statistical: limited data statistics
- Monte Carlo
 - Pythia vs Herwig
- Gignal modeling
 - ISR/FSR, PDF, higher order corrections (MC@NLO vs Alpgen)
- Color reconnection
 - phenomenological description of CR between final state particles
- Background modeling
 - normalization, shape
- Lepton transverse momentum scale
- 🗆 Fit
 - fit method, b-tagging, limited MC statistics
- D MHI:
 - multiple interaction per BC modeling
- D UN/MI:
 - D0 uranium noise and multiple interactions
- JES complicated!



Corrects to particle level

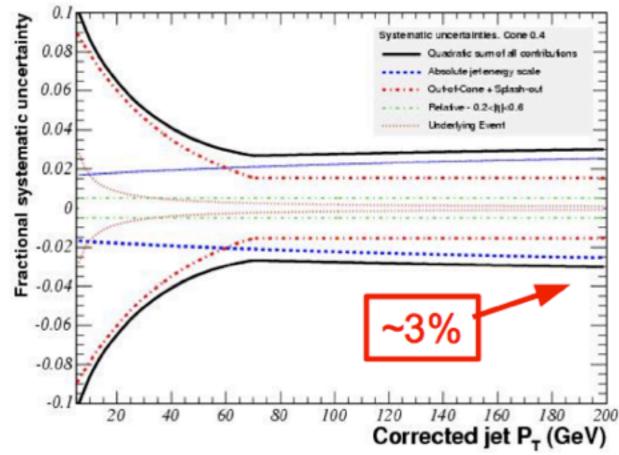
$$E_{corr} = rac{E_{meas} - O}{R imes S}$$

- Offset energy not associated with hard scatter: noise, pile-up, multiple interactions
- Response fraction of particle jet energy deposited in calorimeter by particles; R (F) – absolute (relative) correction
- Showering energy flow in/out of calorimeter jet due to detector effects (finite calorimeter tower and hadron shower size, magnetic field)

- Two separate JES: for data, MC
- Derived mainly from γ + jets data and MC events, verified with multijet and Z+ jets
- Largest uncertainty absolute response correction

Oct 18, 2010 Monday, October 18, 2010

E.Shabaina -- Combination Tutorial



JES: CDF

- Corrects to parton level
- Divided into different levels to accommodate different effects
 - response of the calorimeter
 - non-linearity of response
 - non-instrumented regions
 - spectator interactions
 - energy radiated outside the jet clustering algorithm cone
- Single particle response tuned to
 - Collision data at pT<20 GeV</p>
 - Test beam data for pT>20 GeV
- Depending on the physics analyses, a subset of these corrections can be applied

 Smaller uncertainties due to better tuning of MC to data (factor of ~5)

- Main contributions:
 - Out-of -cone at low pT
 - Absolute JES at high pT

Oct 18, 2010

- aJES: Run-II b-jet/light jet detector response
 (D0)
- bJES: issues specific to b-jets modeling (bfragmentation, semileptonic BR)
- cJES: fragmentation and out-of-cone showering
- dJES: relative (e.g. pseudo-rapidity, pT dependent) JES corrections, calorimeter response to light jets (D0)
- □ iJES: statistical component of JES from in-situ calibration from $W \rightarrow jj$
- rJES: remaining JES dominated by calorimeter response to light jets (CDF)

Tevatron combination

Correlations

Run I I+jets dilepton Run I I+jets dilepton all had

Run II I+jets dilepton Run II I+jets dilepton all had

E.Shabaina -- Combination Tutorial

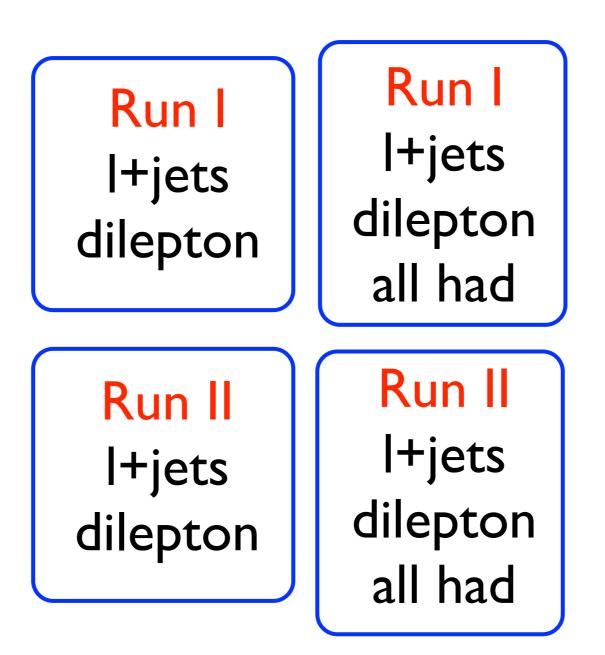
Run I l+jets dilepton Run II l+jets dilepton all had

Run I l+jets dilepton all had Run II l+jets dilepton

correlated among all measurements modeling related uncertainties (signal, bJES, cJES, MC, color reconnection)

Run I l+jets dilepton Run II l+jets dilepton

Run I l+jets dilepton all had Run II l+jets dilepton all had


correlated among all measurements of the same experiment (rJES, UN)

27

correlated in the same run and the same experiment (aJES, dJES, lepton PT, MHI)

Correlations

correlated between all measurements in the same channel (background)

Correlation taken to be 100% – no negative correlations – variations are part of cross-checks – only pragmatic options (and also probably right)

Correlations

Run I I+jets dilepton Run I I+jets dilepton all had

uncorrelated (statistical, iJES, fit)

Run II I+jets dilepton Run II I+jets dilepton all had

Oct 18, 2010

E.Shabaina -- Combination Tutorial

Inputs

	Run I published					Run II p	oublished	Run II preliminary			
	CDF		DØ		C	CDF		DØ		OF	
	all-j	l+j	di-l	l+j	di-l	all-j	trk	l+j	di-l	l+j	di-l
$\int \mathcal{L} dt$	0.1	0.1	0.1	0.1	0.1	2.9	1.9	3.6	3.6	5.6	4.8
Result	186.0	176.1	167.4	180.1	168.4	174.80	175.30	173.75	174.66	173.00	170.56
iJES	-	-	-	-	-	1.64	-	0.47	-	0.58	-
aJES	-	-	-	-	-	-	-	0.91	1.32	-	-
bJES	0.6	0.6	0.8	0.7	0.7	0.21	0.0	0.07	0.26	0.26	0.35
cJES	3.0	2.7	2.6	2.0	2.0	0.49	0.60	0.0	0.0	0.27	2.01
dJES	0.3	0.7	0.6	0.0	0.0	0.08	0.0	0.84	1.46	0.01	0.64
rJES	4.0	3.4	2.7	2.5	1.1	0.21	0.10	0.0	0.0	0.41	1.98
LepPt	0.0	0.0	0.0	0.0	0.0	-	1.10	0.18	0.32	0.14	0.31
Signal	1.8	2.6	2.8	1.1	1.8	0.23	1.60	0.45	0.65	0.21	0.36
Backgd	1.7	1.3	0.3	1.0	1.1	0.35	1.60	0.08	0.08	0.34	0.27
Fit	0.6	0.0	0.7	0.6	1.1	0.67	1.40	0.21	0.51	0.10	0.05
MC	0.8	0.1	0.6	0.0	0.0	0.31	0.60	0.58	1.00	0.37	0.57
UN/MI	-	-	-	1.3	1.3	-	-	-	-	-	-
CR	-	-	-	-	-	0.41	0.40	0.41	0.41	0.37	0.61
MHI	-	-	-	-	-	0.17	0.70	0.05	0.00	0.10	0.27
Syst	5.7	5.3	4.9	3.9	3.6	1.99	3.10	1.60	2.43	1.06	3.09
Stat	10.0	5.1	10.3	3.6	12.3	1.70	6.20	0.83	2.92	0.65	2.19
Total	11.5	7.3	11.4	5.3	12.8	2.61	6.94	1.80	3.80	1.24	3.79

Oct 18, 2010

E.Shabaina -- Combination Tutorial

Tevatron combination

Results

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

GEORG-AUC GÖTTINGEN	GUST-UNIVERSITÄT N	Tevatro	on mass combina	ation	
Mass of the To July 2010 CDF-I dilepton	p Quark (* preliminary) 167.4 ±11.4 (±10.3 ± 4.9)	new	Systematic source	δm _{top} (GeV)	
DØ-I dilepton	168.4 ± 12.8 (±12.3 ± 3.6)	statistical	iJES	0.46	
CDF-II dilepton *	$170.6 \pm 3.8 (\pm 2.2 \pm 3.1)$ $174.7 \pm 3.8 (\pm 2.9 \pm 2.4)$	component of JES b-jet response	aJES	0.21	
CDF-I lepton+jets	176.1 ± 7.4 (± 5.1 ± 5.3)	b-jet energy scale	bJES	0.20	
DØ-I lepton+jets	180.1 ± 5.3 (± 3.9 ± 3.6)	modeling uncertainties	cJES	0.13	
CDF-II lepton+jets *	$173.0 \pm 1.2 (\pm 0.6 \pm 1.1)$ $173.7 \pm 1.8 (\pm 0.8 \pm 1.6)$	residual JES	dJES	0.19	
CDF-I alljets	186.0 ±11.5 (±10.0 ± 5.7)	detector response	rJES	0.15	
CDF-II alljets	$174.8 \pm 2.5 \ (\pm 1.7 \pm 1.9)$ $175.3 \pm 6.9 \ (\pm 6.2 \pm 3.0)$		Lepton p _T	0.10	
Tevatron combination *	$173.3 \pm 1.1 (\pm 0.6 \pm 0.9)$ (± stat ± syst)	ISR/FSR, PDF, NLO	Signal model	0.19	
	χ^2 /dof = 6.1/10 (81%)		Background	0.23	
150 160 170 18 m _{top} (GeV/c ²			Fit	0.11	
0.6% relative (uncertainty	showering model	MC generator	0.40	
m _{top} =173.3±1	.I(total) GeV		Color reconnection	0.39	
			Multiple interactions	0.08	
m _{top} =173.32±0.	56(stat) + 0.89	(syst) GeV	Statistical	0.56	
			Total	1.06	
18, 2010		E.Shabaina Co	ombination Tutorial	33	

Monday, October 18, 2010

Correlation matrix

	Run I published					Run II published		Run II preliminary			
	CDF			DØ		CDF		DØ		CDF	
	l+j	di-l	all-j	l+j	di-l	all-j	trk	l+j	di-l	l+j	di-l
CDF-l+j	1.00	-	-	-	-	-	-	-	-	-	-
CDF-I di-l	0.29	1.00	-	-	-	-	-	-	-	-	-
CDF-I all-j	0.32	0.19	1.00	-	-	-	-	-	-	-	-
DØ-I l+j	0.26	0.15	0.14	1.00	-	-	-	-	-	-	-
DØ-I di-l	0.11	0.08	0.07	0.16	1.00	-	-	-	-	-	-
CDF-II all-j	0.15	0.10	0.12	0.10	0.05	1.00	-	-	-	-	-
CDF-II trk	0.16	0.08	0.07	0.12	0.05	0.06	1.00	-	-	-	-
DØ-II l+j	0.10	0.08	0.06	0.07	0.04	0.10	0.11	1.00	-	-	-
DØ-II di-l	0.07	0.06	0.05	0.04	0.03	0.07	0.07	0.52	1.00	-	-
CDF-II l+j	0.36	0.19	0.23	0.20	0.07	0.19	0.19	0.22	0.15	1.00	-
CDF-II di-l	0.48	0.28	0.35	0.23	0.11	0.21	0.12	0.11	0.08	0.43	1.00

Pulls and weights

		Ru	ı I publis	hed		Run II published		Run II preliminary			
	CDF			DØ		CDF		DØ		CDF	
	l+j	di-l	all-j	l+j	di-l	all-j	trk	l+j	di-l	l+j	di-l
Pull	+0.38	-0.52	+1.11	+1.30	-0.39	+0.62	+0.29	+0.29	+0.37	-0.50	-0.76
Weight [%]	-2.5	-0.5	-0.7	+1.3	+0.2	+10.5	-0.5	+26.2	-2.1	+70.0	-1.8

$$\text{Pull} = \frac{|m_i - \langle m \rangle|}{\sigma_i}$$

Exercises

- <u>http://physik2.uni-goettingen.de/~elis/tutorial.tar.gz</u>
- or lxplus.cern.ch:/afs/cern.ch/user/e/elis/public/

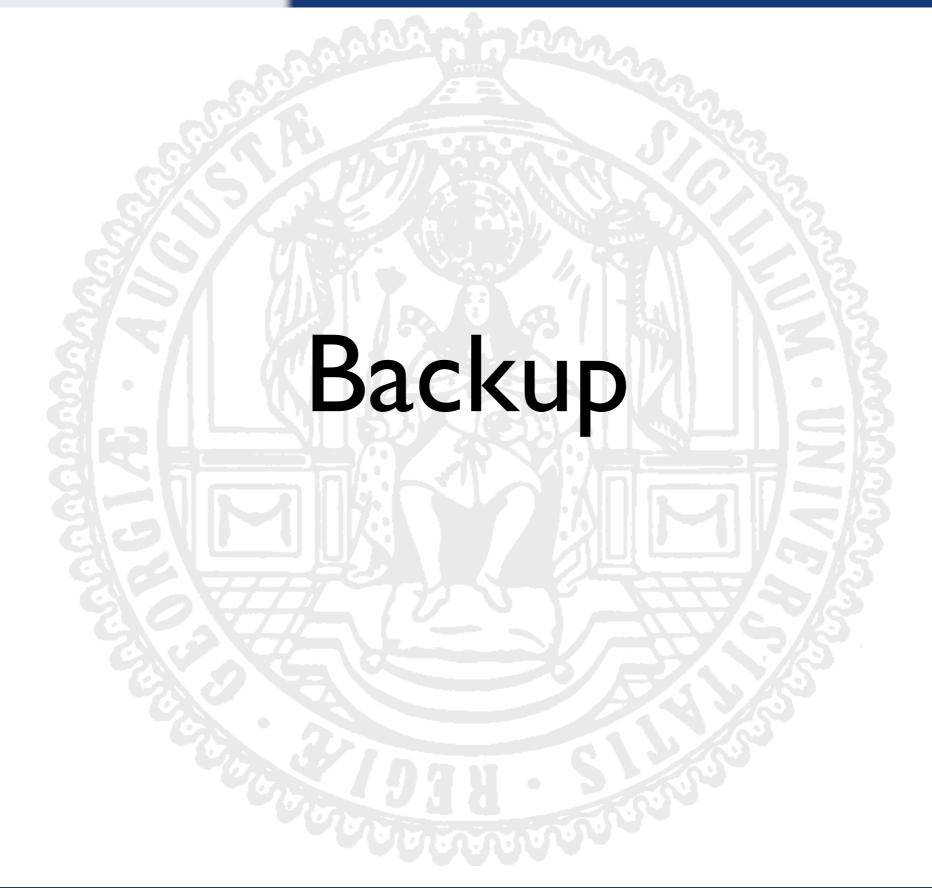
- tar -zxf tutorial.tar.gz
- cd tutorial
- executable combine.exe, no compilation needed
- to run:
 - ./tevatron_Summer_2010
 - output is the latest world average top quark mass

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN	Input
'C-2 di-1' 'Mtop' 170.56 2.19 0.00 0.0 'C-2 allh' 'Mtop' 174.800 1.700 1.640 0.0 'C-2 Lxy ' 'Mtop' 175.30 6.20 0.00 0.0 'D-2 l+jt' 'Mtop' 173.747 0.8294 0.4701 0	dependency flag Pleasurements With uncertainties aJES' 'bJES' 'cJES' 'dJES' 'rJES' 'Lept' 'Signal' 'GEN' 'UN/MI' 'BG' 0 0.6 2.7 0.7 3.35 0.0 2.60 0.10 0.0 1.30 0. 0 0.6 2.7 0.7 3.35 0.0 2.60 0.10 0.0 1.30 0. 0 0.6 2.6 0.6 2.65 0.0 2.80 0.60 0.0 0.30 0. 0 0.6 3.0 0.3 4.00 0.0 1.80 0.80 0.0 1.70 0. 0 0.71 2.0 0.0 2.53 0.0 1.105 0.00 1.3 1.00 0. 0 0.71 2.0 0.0 1.12 0.0 1.80 0.00 1.3 1.10 1. 000 0.264 0.27 0.01 0.41 0.14 0.207 0.37 0.00 0.34 0. 000 0.355 2.01 0.64 1.98 0.31 0.36 0.57 0.00 0.27 <td< td=""></td<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Orrelation Matrices

- Examine the weights of individual measurements
- Exclude the measurements with negative weights from combination
- Report the effect on the top mass uncertainty
- Is it consistent with expected based on L.Lyons,
 D.Gibaut, P.Clifford, NIM A270 (1988)

- Remove all inputs except for Run II I+jets D0, CDF ("D2 I+jt", "C2 I+jt")
- Run combination with these two results only
- Compare resulting uncertainties with the full Tevatron combination
- Scale all uncertainties of statistical origin assuming integrated luminosity of 10 fb⁻¹.
- Run combination. What will be the limiting factor for m_{top} precision?

- Remove all inputs except for Run II I+jets D0, CDF ("D2 I+jt", "C2 I+jt")
- Remove all systematic uncertainties, leave only statistical
- Reproduce case (I) from p112 of Lyons et al
- Change correlations to reproduce case (2)
- Change correlations to obtain negative weights


Examples 4-6

Starting from initial inputs obtain:

- D0 combination, CDF combination using two options:
 - (a) fitting two variables at once (b) creating separate combination code for D0 and CDF
 - is there a difference between (a) and (b)
 - compare your result with D0 note D0combination.pdf and CDF note CDFsum I0MtCombo.pdf
- Run I D0+CDF, Run II D0+CDF
 - use same two options as above and compare
 - compare Run I and Run II uncertainties
- combined m_{top} separately for dilepton, lepton+jets and all hadronic channel compare the results with the Tevatron combination note
 - use same two options as above and compare
- are all measurements consistent with each other?

Helmholtz Alliance Statistics School, 17-20 October, Gottingen

Tevatron categories

Systematic source	correlation					
iJES	uncorrelated					
aJES	correlated among Run (I or II) for the same experiment					
bJES	correlated among all measurements					
cJES	correlated among all measurements					
dJES	correlated among Run (I or II) for the same experiment					
rJES	correlated among all measurements of the same experiment					
Lepton p _T	correlated among Run (I or II) for the same experiment					
Signal model	correlated among all measurements					
Background	correlated among all measurements of the same experiment and chanel					
Fit	uncorrelated					
MC generator	correlated among all measurements					
Color reconnection	correlated among all measurements					
Multiple interactions	correlated among all measurements					
t 18,2010 Total	E.Shabaina Combination Tutorial L.06					

Monday, October 18, 2010

0¢

2 types of uncertainties:

- 1) result from the +/- 1 sigma variation of a certain quantity
 - 3 types of treatment: M_{nom} = central value, σ_M = quoted uncertainty
 - 1.a) +/- shift leads to M_{\star}/M_{-} where $M_{\star} < M_{nom} < M_{-}$ or $M_{-} < M_{nom} < M_{+}$

 $\sigma_{M} = |M_{-}-M_{+}|/2$

1.b) +/- shift when M_-M_nom and M_-M_nom have the same sign

 $\sigma_{M} = \max(|M_{+}-M_{nom}|/2,|M_{-}-M_{nom}|/2)$

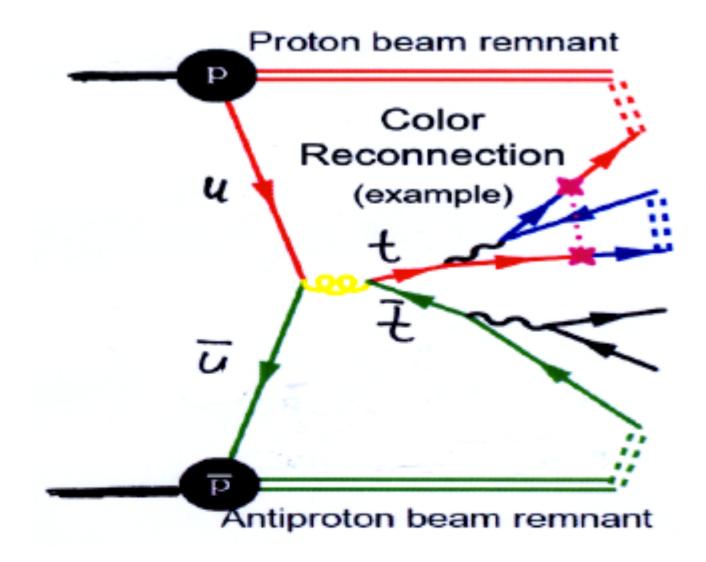
JES, residual JES, b-JES, PDF, ISR/FSR, detector modeling, method , bkg

1.c) only one sided variation allowed:

quote full difference as one sided systematic (asymmetric)

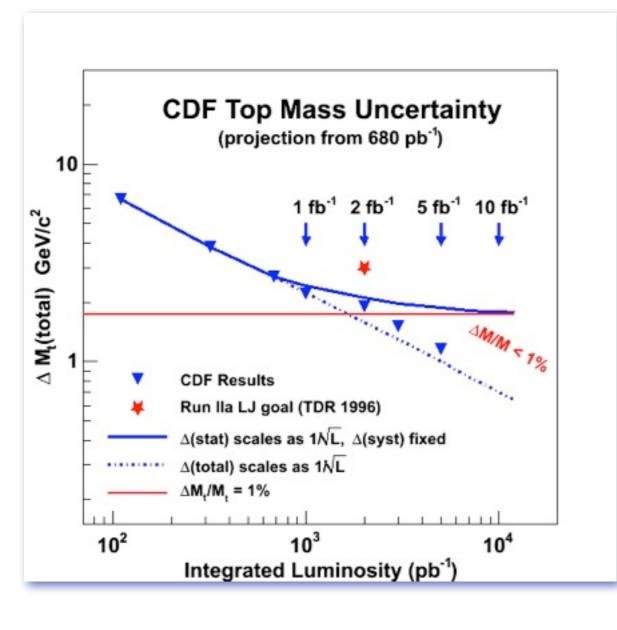
sample dependence JES, sometimes trigger, lepton momentum scale

2) difference between 2 (more) models


full maximal difference as σ_M (symmetrized)

b-fragmentation, hadronization modeling, higher order effects, UE and CR

Color reconnection



E.Shabaina -- Combination Tutorial

Future precision

CDF example

Systematic source	δm _{top} (GeV)
calibration	0.10
MC generator	0.37
Radiation	0.15
Residual jet energy scale	0.49
b-jet energy scale	0.26
Lepton p _T	0.14
Multiple hadron interactions	0.10
PDFs	0.14
Background	0.34
Gluon fraction	0.03
Color reconnection	0.37
Total	0.88

Approaching I GeV uncertainty on a single measurement

E.Shabaina -- Combination Tutorial

Monday, October 18, 2010