Unfolding

Two parts:

1. Critical review of 3 unfolding methods:
 regularization and error assignment
 2. Binning-free unfolding

Some initial remarks:

The purpose of a measurment is

- to establish or reject a theory
- or to provide input parameters for secondary applications.

It should be possible to combine measurements.
Measurements without error limits are useless.
Results should be published in such a way that they do not require extensive additional explications in the text, or even worse, in Refs.

These requirement also apply to unfolding results

The problem

unknown true distribution
true data sample
observed data sample

We got y, we want to know $f(x)$

Situation A: $\mathrm{f}(\mathrm{x})$ is known up to unknown parameter values $\mathrm{f}(\mathrm{x} \mid \theta)$ (vast majority of cases: mass spectra, lifetime measurements, etc.)
solution: fit λ, standard techniques: maximum likelihood, χ^{2}, reweight MC (see G.B.+G.Z. http:/www-library.desy.de/elbook.html, page 157)

Situation B: $\quad \mathrm{f}(\mathrm{x})$ is completely unknown

solution: parametrize $\mathrm{f}(\mathrm{x})$: histogram (or higher splines), parameters are the content of the true histogram bins
\rightarrow back to situation A
\rightarrow Poisson maximum likelihood or χ^{2} fit
what is special? many parameters (order 100), strongly correlated, some smoothing inherent due to binning.

The parameters and the error matrix provide the necessary information for comparisons with theoetical predictions or other experiments and for combining measurements and should be published.

There are no major technical problems to compute these items.

Why are most physicists not satisfied with this solution?

Due to the correlations, it is not suited for a graphical representation! There are strong fluctuations from one bin to the next one.

Adjacent bins of the unfolded histogram are strongly correlated.
We could make them more equal without changing the likelihood or χ^{2} by much. \rightarrow Regularization
The corrected histogram is smooth and well compatible with the data.

black: original distribution yellow: unfolding result without regularization

The regularization scheme may be based on / include :

- the tranfer matrix
- the data error matrix
- the shape of the unfolded distribution

Notation

d: (observed) data vector ϑ : true distribution vector
T: transfer matrix (from MC)

$d \cong T \vartheta$

Regularization methods:

Method 1: Least square matrix inversion:

orthogonalize parameters, exclude non-significant parameters

- The regularization depends on measurement errors and transfer matrix
- The truncation (the regularization strength) is in most implementations somewhat arbitrary or not consistent with the standard error assignment.

We simplify, to show the principle:
same number of bins in true and observed distribution (T quadratic)

$$
d=T \vartheta \quad \longrightarrow \quad \vartheta=T^{-1} d
$$

Simple matrix inversion \rightarrow oscillations. To understand this look at eigenvectors u_{i} of T and eigenvalue λ_{1}

Get eigenvectors of T: u_{i}

$$
\lambda_{i} u_{i}=T u_{i}
$$

A true distribution u_{i} produces an observed distribution v_{i} of the same shape but multiplied by the eigenvalue λ_{i}

$$
\begin{aligned}
v_{i} & =\lambda_{i} u_{i}=T u_{i} \\
u_{i} & =T^{-1} v_{i}=\frac{1}{\lambda_{i}} v_{i}
\end{aligned}
$$

Adding v_{i} to the observed data \rightarrow adding u_{i} to the unfolded distribution. Small values of λ lead to large contributions!
μ
α
Günter Zech, Universität Siegen, October 2010
λ

Example: 10×10 transfer matrix

6	.3	1							
3	.5	.2							
1	.2	.5	.2				0		
		.2	.5	.2	.1				
			.2	.5	.2	.1			
			.1	.2	.5	.2			
				.1	.2	.5	.2		
		0				2	.5	.2	.1
							.2	.5	.3
							1	.3	.6

Günter Zech, Universität Siegen, October 2010

One should use less bins for the true histogram than for the observed data. $\rightarrow \mathrm{T}$ is rectangular.

The least square fit has to include the error matrix E of the data vector d. (weight matrix $\mathrm{V}=\mathrm{E}^{-1}$. We transform to a quadratic matrix C :

$$
\begin{array}{cl}
T \Rightarrow C=\left(T^{T} V\right) T & d \Rightarrow b=\left(T^{T} V\right) d \\
C \vartheta=b & \vartheta=C^{-1} b
\end{array}
$$

Eliminate small eigenvalues of C ,
(see V. Blobel's talk at the Desy workshop on unfolding)

Likelihood (or χ^{2}) fit with curvature regularization

- The result depends on measurement errors, transfer matrix and data vector (smoothing even with diagonal transfer matrix)
- The regularization strength can be controlled by chi-squared.

$\chi^{2}=\sum_{k} \frac{\left(d_{k}-\sum_{j} T_{k j} \vartheta_{j}\right)^{2}}{\delta_{k}^{2}}+R_{\text {regu }}(\vartheta)$
d_{k} : observed histogram, δ_{k} error
ϑ : true histogram to be fitted
T : transfer matrix from Monte Carlo, R: penalty for curvature

Standard: curvature regularization \rightarrow prefers a linear distribution.

$$
R_{\text {regu }}=r\left(2 \vartheta_{i}-\vartheta_{i-1}-\vartheta_{i+1}\right)^{2}
$$

r: regularisation strength

You can use a different penalty term and apply for instance the regularization to the deviation of the fitted from the expected shape of the distribution (iterate).

Iterative adjustment (Mültai et al. (1986), D‘Agostini (1994))

- The regularization depends on transfer matrix and presumed true distribution, independent from measurement errors
- A chi-squared control of regularization strength ispossible
a) starting true distribution

b) corresponding folded distribution.

c) observed data distribution

d) 1. Iteration

Multiply each contribution

 by a factor to get aggreement with the observed distribution and put it back to the true distribution
Example

Empty histogram:
original distribution
Empty histogram:
original distribution yellow: unfolding result

At the 4-th iteration already oscillations appear \rightarrow stop after the first or second iteration

How to fix the increase in χ^{2} caused by the regularization

- compute χ^{2} without regularization (ML fit) $\rightarrow \chi^{2}{ }_{0}$
- compute χ^{2} with regularization $\rightarrow \chi^{2}{ }_{r}$
- p-value: $\mathrm{p}\left(\Delta \chi^{2}\right)=90 \%, \rightarrow \chi_{\mathrm{r}}^{2}=\chi^{2}{ }_{0}+\Delta \chi^{2}$,
(degrees of freedom $=$ number of data bins)

Regularization and error

Assume somebody measures the altitude profile of a soft mountain region with a GPS device. He determines the location of the peak and of contour lines. He will not be able to fix location of the highes point with good precision, but the position of the contour lines where the slope is steep will be rather well determined.

Günter Zech, Universität Siegen, October 2010

Error contour of two adjacent bin contents with and without soft regularization. The shifted maximum (to make the distribution smooth) is well compatible with the measurement, but the new error contours are not! Regularization moves the whole mountain!

Standard implementations apply regularization and justify this by the compatibility of the modified distribution with the observed data.

However they silently apply error propagation and produce errors depending on the regularization strength (reduced errors and shifted contours) which are not justified by the observations.

The point estimate is ok, but not the interval estimate!

Top and bottom are the same data. The constraint due to regularization reduces the errors. The error assignment makes no sense.

Günter Zech, Universität Siegen, October 2010

Summary and conclusions

1. Regularization moves the raw error contours and may exclude admissible distributions.
ㄴ) \rightarrow Publish results without regularization, include the full error matrix.
2. Use chi-square probability (90%, soft regularization) to fix the regularization strength. Avoid arbitrary choices.
3. Unfolded bins should have large containment (> 70%).
4. There is no objective way to reject a certain regularization scheme. For instance, starting with a certain distribution in the iterative unfolding is perfectly ok.
5. D`Agostini‘s way to stop the iteration is arbitrary.
6. The 3 approaches differ in what enters into the regularization: All 3 depend of course on the transfer matrix

+ error matrix of data vector (matrix least square method)
+ first guess of true distribution (iterative unfolding)
+ error matrix of data vector + shape of fitted distribution
(likelihood with curvature regularization)

8. My prefered method is the likelihood fit with curvature regularization.

Some further remarks

- Check effect from uncertainty in the resolution (How good is the Monte Carlo simulation?)
- Check effect of MC input distribution, used to get T. If necessary, iterate (re-weighting).
- Try to avoid a contribution to the statistical error from MC $(\rightarrow$ difficult error estimate)
- Do not use programs off-the-shelf unless you have understood the method and share the underlying philosophy.
- It is not sufficient to show that the results are reasonable for a certain selection of examples.
- Unbiasedness is not an essential criterion. The quotient $\theta /(\delta \theta)^{2}$ has to be unbiased.

A posssible way to present the unfoded data

Proposal: vertical bar \rightarrow statistical from \# of events, horizontal bar \rightarrow resolution

Binning-free Unfolding

Günter Zech, Desy May 2010

Observed event \rightarrow true location

- motivation
- basic idea: likelihood, analytic resolution function
- how to find the minimum
- regularization
- results
- include Monte Carlo resolution
- further steps

Motivation

There are situations where binned unfolding suffers from serious difficulties:

- low statistics (for example 40 events)
- events located on unknown curves or points (astronomy)
- multi-dimensional distributions (structure functions) (imagine 1000 events, 3 dimensions, 5 bins each
$\rightarrow 125$ bins and in average only 8 events per bin

Advantages:

- apply cuts after unfolding
- define histogram parameters after unfolding
- define histogram variables after unfolding (unfold $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}$, plot E)
- consistent histograms of projections

Basic idea

As in parameter fitting, apply single event likelihood

$$
\ln L\left(x_{1}, . ., x_{N}\right)=\sum_{i=1}^{N} \ln \sum_{j=1}^{N} f\left(x_{i}^{\prime} \mid x_{j}\right)
$$

Notation:

- analytic resolution function $\mathrm{f}\left(\mathrm{x}^{〔}, \mathrm{x}_{\mathrm{i}}\right)$
- True location of point $\mathrm{i}: \mathrm{x}_{\mathrm{i}}$ (free parameters in the fit. 10000 events, 2 dimensions $\rightarrow 20000$ parameters
- Observed location $X_{i}{ }^{6}$
(For simplicity written in 1 dimension, but all variables could be vectors)

Minimum search

We have a huge number of parameters, but:

- it is easy to select good starting values
- the minima of $-\ln L$ are rather shallow
- no dangerous local minima

Minimum search by random migration:

- select randomly a true point move by random step according to a uniform distribution
- accept if the likelihood increases
- repeat until result is satisfying

At the beginning, the true points (red) were sitting on top of the observed data points (blue). They move in such a way that the likelihood increases.

Günter Zech, Universität Siegen, October 2010

Regularization

Two possibilities, either

1. Stop migration process, or
2. Curvature regularization by probability density estimation using side bands

$$
R=r \frac{\left(r_{c}-n_{L}-n_{R}\right)^{r}}{n_{c}+n_{L}+n_{R}} \quad \ln L=\ln L_{\text {stat }}-R
$$

Correspondingly in higher dimensions
r: regularization constant
n_{c} : number of events in central region
n_{L}, n_{R} : number of events in left and right hand side bands

Some Results

Generate 2 Gaussians at $\mathrm{x}=-2, \mathrm{y}=0$ and at $\mathrm{x}=+2, \mathrm{y}=0$ and widths $\mathrm{s}_{\mathrm{x}}=1, \mathrm{~s}_{\mathrm{y}}=1$ for both
fraction left: 0.6 , fraction right: 0.4 1000 events

Gaussian smearing with width $\mathrm{s}=1$
$G(x, y \mid-r, \cdots, 1,1)$

$$
f\left(x^{\prime}, y^{\prime} \mid x_{2}, y\right)=G\left(x_{1}^{\prime}, y_{2}^{\prime} \mid x_{2}, y^{\prime},{ }^{\prime}\right)
$$

true

smeared

unfolded (no regularization)

Günter Zech, Universität Siegen, October 2010
unfolded

Regularization by limiting the number of moves

Side band regularization

Günter Zech, Universität Siegen, October 2010

4000 events, side band regularuzation, x projection

y projection

4000 events, y-projection, $\mathrm{cr}=0.0001$

Günter Zech, Universität Siegen, October 2010

Distribution of $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$ (not possible with binning)

$\sigma=4.5$
$\sigma=7.0$
$\sigma=4.7$

Acceptance and resolution from Monte Carlo

So far we had assumed an analytic resolution function. Normally we know it from a Monte Carlo simulation.

We replace the analytic function by Monte Carlo satellites: Each MC true point is surrounded by k observed points (stallites) which are simulated measurements.

We move the true point together with its satellites until the observed points are compatible with the experimental data.

To do so, we need a binning-free goodness-of-fit statistic to measure the aggreement of the simulation with the data: energy test statistic or k nearest neighbor statistic. (see Refs.)

\square experim.
observation

The MC points move until the distribution of the black dots agrees with the distribution of the green boxes

Remarks:

- The smearing is reduced by factor \sqrt{k}
- Result is independent of the distance function.
- Result is independent of migration step width.
- Regularization strength depends on k
- Regularization can be steered by stopping the process

Günter Zech, Universität Siegen, October 2010

Examples

One-dimensional distribution

(unfolded binning-free, presented as histogram)

original

smeared

unfolded

Günter Zech, Universität Siegen, October 2010

Two-dimensional drawing (not feasable with binning)

600 experimental observations,
$k=25$ observation per MC true point
20000 random moves

Some complications

Acceptance losses

Solution: weighting
During generation of observations remember $w_{j}=k / \#$ of trials
\rightarrow MC observations are weighted.
After unfolding, weights are included in the error calculation.

Variation of resolution and acceptance with position (similar problem as in binned case)

Solution: iteration, repeat the simulation periodically

What about speed?

With analytic function, 2 dimensions, $\mathrm{N}=1000$ events + side band regularization, 100000 moves: 100 s $\mathrm{N}=4000 \rightarrow 15 \mathrm{~min} . \mathrm{t} \sim \mathrm{N}^{2}$
(on a 5 years old slow labtop)
With MC satellites time increases proportional to the number k^{2} of satellites

Speed can be increased:

- faster computer,
- migration in two steps. step 1: use approximate analytic function step 2: simulate satellites and iprove precision.
- consider only points in neighborhood $\rightarrow \mathrm{t} \sim \mathrm{N}$
- increase \# of satellites during process

Future improvements

- include side band regularization into MC scheme
- combine analytic and MC approaches.
step 1: use approximate analytic function
step 2: simulate satellites and improve precision.
- increase speed by storing addresses of neighboring points
- automatic parameter setting based on data

More details can be found in:

1. G. Bohm, G. Zech, Einführung in Statistik und Messwertanalyse für Physiker, Ebook, Desy Library
2. G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for Physicists , Ebook, Desy Library (considerably extended w.r. to German version) (soon available)
3. B. Aslan and G. Zech, Statistical energy as a tool for binning- free goodness-of-fit tests, two sample comparison and unfolding. NIM A 537 (2005) 626
4. B. Aslan and G. Zech, \emph\{New Test for the Multivariate Two-Sample Problem based on the concept of Minimum

Side-band regularization in x

smeared

$\mathrm{r}=0.2,500000$ trials

$\mathrm{r}=0.1,20000$ trials

$$
\mathrm{r}=0.2,500000 \text { trials }
$$

$\mathrm{r}=0.2,50000$ trials double step width

Dalitz plot with 25 satellites

2000 events, K*, ϕ
$k=25$

original data
smeared data

unfolded data

Günter Zech, Universität Siegen, October 2010

