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Unfolding

1. Critical review of 3 unfolding 
methods:

    regularization and error assignment

2. Binning-free unfolding

Two parts:
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Some initial remarks:

The purpose of a measurment is

• to establish or reject a theory 

• or to provide input parameters for secondary applications. 

It should be possible to combine measurements.

Measurements without error limits are useless.

Results should be published in such a way that they do not 
require extensive additional explications in the text, or even 
worse, in Refs.

These requirement also apply to unfolding results
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The problem

unknown true distribution

true data sample

observed data sample

)(xf

}{ Nxxx ,..,, 21

}{ Myyy ,..,, 21

standard unfolding

binning-free
unfolding

Poisson

smearing

We got y, we want to know f(x)
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f(x) is known up to unknown parameter values f(x| θ )
(vast majority of cases: mass spectra, lifetime 
measurements, etc.)

fit λ, standard techniques: maximum likelihood, χ2 , re-
weight MC
(see G.B.+G.Z. http:/www-library.desy.de/elbook.html, page 157)

Situation A:

solution:

Situation B: f(x) is completely unknown

solution: parametrize f(x): histogram (or higher splines), 
parameters are the content of the true histogram bins 
 back to situation A
 Poisson maximum likelihood or χ2 fit 

what is special? many parameters (order 100), strongly correlated,
some smoothing inherent due to binning.
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The parameters and the error matrix provide the necessary 
information for comparisons with theoetical predictions or other 
experiments and for combining measurements and should be 
published.

There are no major technical problems to compute these items.

Why are most physicists not satisfied with this solution?

Due to the correlations, it is not suited for a graphical 
representation! There are strong fluctuations from one bin to the 
next one.
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Adjacent bins of the unfolded histogram are strongly correlated.

We could make them more equal without changing the likelihood 
or χ2 by much.  Regularization 
The corrected histogram is smooth and well compatible with the 
data.

black: original distribution

yellow: unfolding result 
without regularization

The regularization scheme may be 
based on / include :
• the tranfer matrix
• the data error matrix
• the shape of the unfolded 
distribution
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d: (observed) data vector
  : true distribution vector
T: transfer matrix (from MC)

ϑTd ≅

observed histogram = data vector

ϑ

Notation
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Regularization methods:

Method 1: Least square matrix inversion:
 
orthogonalize parameters, exclude non-significant parameters

• The regularization depends on measurement errors and transfer 
matrix
• The truncation (the regularization strength) is in most 
implementations somewhat arbitrary or not consistent with the 
standard error assignment.

We simplify, to show the principle: 
   same number of bins in true and observed distribution (T quadratic)

ϑTd = dT 1−=ϑ
Simple matrix inversion  oscillations. To understand this look 
at eigenvectors ui of T and eigenvalue λι
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iii Tuu =λ

i
i

ii vvTu
λ
11 == −

Get eigenvectors of T:  ui 

iiii Tuuv == λ

A true distribution ui produces an observed distribution 
vi of the same shape but multiplied by the eigenvalue λi

σ
µ
α
λ

Adding vi to the observed data  adding ui to the unfolded distribution.
Small values of λ lead to large contributions!
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Example: 10 x 10 transfer matrix

.6 .3 .1

.3 .5 .2

.1 .2 .5 .2 0

.2 .5 .2 .1

.2 .5 .2 .1

.1 .2 .5 .2

.1 .2 .5 .2

0 .2 .5 .2 .1

.2 .5 .3

.1 .3 .6
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       u                           v = λ u                λ
1 .0 0

0 .9 7

0 .9 0

0 .6 5

0 .5 0

0 .3 6

0 .2 6

0 .2 5

0 .1 7

0 .1 5

The true distribution is a super- 
position of the eigenvectors u.

The eigenvectors are orthogonal.

A contribution v to the data             
 contribution u to the result.

Eliminate contributions 5 to 10 with 
small eigenvalues. (v compatible 
with zero) The unfolded distribution 
is then a superposition of u1 to u5

(or reduce their contribution)

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 0
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One should use less bins for the true histogram than for the observed data.
T is rectangular.

The least square fit has to include the error matrix  E of the data vector d.
(weight matrix V=E-1) . We transform to a quadratic matrix C:

TVTCT T )(=⇒ dVTbd T )(=⇒

bC =ϑ
Eliminate small eigenvalues of C, 

(see V. Blobel‘s talk at the Desy workshop on unfolding)

bC 1−=ϑ
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dk: observed histogram, δ k error
  : true histogram to be fitted
T: transfer matrix from Monte Carlo,    R: penalty for curvature

[ ] )(ln ϑϑϑ
reguk j j jkjjkjk
RTTdL −−−= ∑ ∑ ∑

Likelihood (or χ2) fit with curvature regularization

• The result depends on measurement errors, transfer matrix and data 
vector (smoothing even with diagonal transfer matrix)

• The regularization strength can be controlled by chi-squared.

ϑ
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Standard: curvature regularization  prefers a linear distribution.

2
11 )2( +− −−= iiiregu rR ϑϑϑ r: regularisation strength

 You can use a different penalty term and apply for 
instance the regularization to the deviation of the fitted 
from the expected shape of the distribution (iterate).
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Iterative adjustment (Mültai et al. (1986) , 
D‘Agostini (1994))

• The regularization depends on transfer matrix and presumed 
true distribution, independent from measurement errors

• A chi-squared control of  regularization strength ispossible
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d) 1. Iteration

c) observed data distribution

x1 x1

x1.3
x2        x1.5

b) corresponding folded distribution.

a) starting true distribution

Multiply each contribution 
by a factor to get 
aggreement with the 
observed distribution and 
put it back to the true 
distribution
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Example

At the 4-th iteration already oscillations appear  stop after 
the first or second iteration

Empty histogram: 
original distribution

yellow: unfolding 
result
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How to fix the increase in χ2 caused by the regularization

- compute χ2 without regularization (ML fit)  χ2
0

- compute χ2 with regularization  χ2
r

- p-value: p(∆ χ2 ) = 90 %,   χ2
r =  χ2

0+ ∆χ2,         
       (degrees of freedom = number of data bins)   
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Regularization and error

Assume somebody measures the altitude profile of a soft mountain 
region with a GPS device. He determines the location of the peak 
and of contour lines. He will not be able to fix location of the highes 
point with good precision, but the position of the contour lines where 
the slope is steep will be rather well determined. 
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Error contour of two adjacent bin contents with and without soft 
regularization. The shifted maximum (to make the distribution 
smooth) is well compatible with the measurement, but the new error 
contours are not! Regularization moves the whole mountain!

∆lnL=-0.4

∆lnL=-1.6

−2 lnL contour plot

−0 .5

red: after 
regularization
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Standard implementations apply regularization and 
justify this by the compatibility of the modified 
distribution with the observed data.

However they silently apply error propagation and 
produce errors depending on the regularization strength 
(reduced errors and shifted contours) which are not 
justified by the observations.

The point estimate is ok, but not the interval estimate!
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Top and bottom are the same data. The constraint 
due to regularization reduces the errors. The error 
assignment makes no sense.

with regularization

no regularization



Günter Zech, Universität Siegen, October 2010

Summary and conclusions

1. Regularization moves the raw error contours and may 
exclude admissible distributions.

22  Publish results without regularization, include the full 
error matrix.

3. Use chi-square probability (90 %, soft regularization) to fix 
the regularization strength. Avoid arbitrary choices.

4. Unfolded bins should have large containment (> 70 %).
5. There is no objective way to reject a certain regularization 

scheme. For instance, starting with a certain distribution in 
the iterative unfolding is perfectly ok.

6. D‘Agostini‘s way to stop the iteration is arbitrary.
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7.  The 3 approaches differ in what enters into the 
regularization: All 3 depend of course on the transfer 
matrix

    + error matrix of data vector (matrix least square method)
    + first guess of true distribution (iterative unfolding)
    + error matrix of data vector + shape of fitted distribution    

                 (likelihood with curvature regularization)
8.  My prefered method is the likelihood fit with curvature 

regularization. 
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Some further remarks

• Check effect from uncertainty in the resolution 
(How good is the Monte Carlo simulation?)

• Check effect of MC input distribution, used to 
get T. If necessary, iterate (re-weighting).

• Try to avoid a contribution to the statistical 
error from MC ( difficult error estimate) 

•  Do not use programs off-the-shelf unless you 
have understood the method and share the 
underlying philosophy. 

• It is not sufficient to show that the results are 
reasonable for a certain selection of examples.

• Unbiasedness is not an essential criterion. The 
quotient θ/(δθ)2  has to be unbiased.
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Proposal: vertical bar  statistical from # of events, 
horizontal bar  resolution

A posssible way to present the unfoded data
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Binning-free Unfolding
         Günter Zech, Desy May 2010

• motivation
• basic idea: likelihood, analytic resolution function
• how to find the minimum
• regularization
• results
• include Monte Carlo resolution
• further steps

Observed event  true location
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Motivation

There are situations where binned unfolding 
suffers from serious difficulties:

• low statistics (for example 40 events)

• events located on unknown curves or points (astronomy) 

• multi-dimensional distributions (structure functions)
  (imagine 1000 events, 3 dimensions, 5 bins each
  125 bins and in average only 8 events per bin
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Advantages:

• apply cuts after unfolding

• define histogram parameters after unfolding

• define histogram variables after unfolding
   ( unfold px, py, plot E)

• consistent histograms of projections
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Basic idea

As in parameter fitting, apply single event likelihood

Notation:

• analytic resolution function f(x‘,xi)

• True location of point i: xi  (free parameters in 
the fit. 10000 events, 2 dimensions  20000 
parameters

• Observed location xi‘

(For simplicity written in 1 dimension, but all variables 
could be vectors)

∑ ∑
= =

= N

i

N

j jiN
xxfxxL

1 11
)|'(ln),..,(ln
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Minimum search

We have a huge number of parameters, but:
•  it is easy to select good starting values
•  the minima of –lnL are rather shallow
•  no dangerous local minima

Minimum search by random migration:
• select randomly a true point move by random step according 

to a uniform distribution
• accept if the likelihood increases
• repeat until result is satisfying 
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At the beginning,  the true points (red) were sitting on 
top of the observed data points (blue).  They move in 
such a way that the likelihood increases.

-4 -3 -2 -1 0 1

 

 

observed

fitted

x

y
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Regularization

Two possibilities, either
1.  Stop migration process, or
2. Curvature regularization by probability density estimation 

using side bands 

r: regularization constant
nc: number of events in central region
nL, nR: number of events in left and right hand side bands

RLC

RLC

nnn
nnn

rR
++
−−=

2)2(
RLL

stat
−= lnln

Correspondingly in higher dimensions
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Some Results

Generate  2 Gaussians at x = -2, y = 0 and at x = +2, y = 0
and widths sx = 1, sy = 1 for both

fraction left: 0.6, fraction right: 0.4
1000 events

Gaussian smearing with width s = 1

)1,1;,|','(),|','( yxyxGyxyxf =

)1,1;0,2|,(
2

+yxG)1,1;0,2|,(
1

−yxG
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true                             smeared                    unfolded
                                                             (no regularization)
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1000 moves

2000 moves

100000 moves

unfolded

Regularization by 
limiting the number of 
moves
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Side band regularization
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Distribution of r2 = x2 + y2

   (not possible with binning)
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Acceptance and resolution from     
 Monte Carlo

So far we had assumed  an analytic resolution function.
Normally we know it from a Monte Carlo simulation.

We replace the analytic function by Monte Carlo satellites:
Each MC true point is surrounded by k observed points 
(stallites) which are simulated measurements.

We move the true point together with its satellites until the 
observed points are compatible with the experimental data.

To do so, we need a binning-free goodness-of-fit statistic to 
measure the  aggreement of the simulation with the data: 
energy test statistic or k nearest neighbor statistic. (see Refs.)
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The MC points move until the distribution of the black dots agrees 
with the distribution of the green boxes

Remarks:

• The smearing is reduced by factor

• Result is independent of the distance function.

• Result is independent of migration step width.

• Regularization strength depends on k

• Regularization can be steered by stopping the process

k
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Examples

One-dimensional distribution

original                     smeared               unfolded

(unfolded binning-free, presented as histogram)
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Two-dimensional drawing (not feasable with binning)

600 experimental observations, 
k = 25 observation per MC true point
20 000 random moves 

0 100 200

en
er

gy

# of moves /100
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Some complications
Acceptance losses

Solution: weighting

 During generation of observations remember wj = k / # of trials 
 MC observations are weighted.
After unfolding, weights are included in the error calculation.

Variation of resolution and acceptance with position 
(similar problem as in binned case)

Solution: iteration, repeat the simulation 
periodically
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What about speed?

With analytic function, 2 dimensions, N=1000 events + side band 
regularization, 100000 moves: 100 s
N=4000  15 min. t ~ N2 
( on a 5 years old slow labtop)

With MC satellites time increases proportional to the number k2 of satellites

Speed can be increased: 
• faster computer, 
• migration in two steps. step 1: use approximate analytic function
       step 2: simulate satellites and iprove precision.
• consider only points in neighborhood  t ~ N
• increase # of satellites during process 
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Future improvements

• include side band regularization into MC scheme
• combine analytic and MC approaches. 
       step 1: use approximate analytic function
       step 2: simulate satellites and improve precision.
• increase speed by storing addresses of neighboring    
points
• automatic parameter setting based on data

More details can be found in:

1. G. Bohm, G. Zech, Einführung in Statistik und Messwertanalyse für Physiker , E-
book, Desy Library

2. G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for Physicists , E-
book, Desy Library (considerably extended w.r. to German version) (soon available)

3. B. Aslan and G. Zech, Statistical energy as a tool for binning- free goodness-of-fit 
tests, two sample comparison and unfolding. NIM A 537 (2005) 626

4. B. Aslan and G. Zech, \emph{New Test for the Multivariate 
Two-Sample Problem based on the concept of Minimum 
Energy}, J. Statist.Comput. Simul. 75, 2 (2004), 109
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Side-band regularization in x
true

smeared

r=0, 20000 trials r=0.1, 20000 trials

r=0.2, 5000 trials r=0.4, 20000 trials

r=0.2, 500000 trials r=0.2, 50000 trials
double step width

r=0.2, 500000 trials



Günter Zech, Universität Siegen, October 2010

Dalitz plot with 25 satellites
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smeared data

unfolded data

2000 events, K*, φ
k =25
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