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Abstract

Measurements of different physical quantities are often correlated when they are performed by the same experiment,

using the same data or the same detector. Correlations may also exist between the results of different experiments, for

instance if they rely on the use of the same theoretical models. All these correlations must be properly taken into

account to provide the best combined estimate of each measured quantity. A procedure used to combine the correlated

results of different high-energy physics experiments is reviewed in this paper.
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1. Introduction

Most modern high-energy physics experiments
are designed to perform simultaneous measure-
ments of different physical quantities. The various
results produced by a single experiment are often
correlated because they are produced using the
same detector, and in some cases the same data
sample. It is also common for the same physical
quantities to be measured by similar techniques at
more than one experiment, in some cases using
detectors installed on the same accelerator facility.
The results produced by different experiments may
thus be significantly correlated too, if they are
based on the same theoretical models or they

depend on the knowledge of a common accelerator
parameter.
In order to provide the best estimate of each

measured observable, it is clearly desirable to
make use of all results from the different experi-
ments. A well-known technique to combine many
measurements of a single physical quantity is the
best linear unbiased estimate method described in
Ref. [1]. A simple approach could then be to
perform as many separate combinations as there
are different measured observables, using the
above method in each case. In the absence of
correlations between the measurements of differ-
ent quantities, this would yield the ‘‘best’’ com-
bined estimate of each of them, i.e. that of
minimum variance. However, if the measurements
of the various observables are correlated, a better
approach, leading to smaller variances for theE-mail address: andrea.valassi@cern.ch (A. Valassi).
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combined results, consists in performing a joint
combination of all measured quantities at the same
time, making use of the complete covariance
matrix of the input data and thus taking into
account all correlations between them.
The purpose of this paper is to review this

technique, which represents a straightforward
extension to the case of multiple observables of
the method described in Ref. [1] for a single
physical quantity. A simple proof of the algebraic
solution to the problem of finding best linear
unbiased estimates for a set of correlated obser-
vables will be recalled in Section 2, in close
analogy to Ref. [1]. The problem is equivalent to
that of minimizing a sum of squared distances of
the measurements from the combined estimates, as
in the case of one observable; the minimum value
of this sum, distributed as a w2; can be used to
assess the consistency of all input measurements,
taking properly into account their correlations.
While the problem can also be solved by minimiz-
ing the w2 using numerical methods, it will be
argued that the algebraic solution makes it easier
to break down the errors on the combined
estimates into individual components, representing
the contributions of the different sources of
uncertainty on the input measurements. In
Section 3, this method will be compared to the
approach of performing as many separate combi-
nations as there are measured physical quantities,
ignoring all correlations between the measure-
ments of different observables, proving the above
statement that it leads to smaller uncertainties on
each combined estimate. Some features and con-
sequences of this technique will then be discussed
in Section 4 in the specific case of an ad hoc
example using fictitious experimental data. Final-
ly, conclusions will be drawn in Section 5.
The problems described above are often en-

countered in the context of the activities of the
LEP ElectroWeak Working Group (LEPEWWG),
which is responsible for combining the precision
measurements of various electroweak observables
performed by the LEP experiments ALEPH,
DELPHI, L3 and OPAL. In several occasions,
combinations of published and preliminary results
of the four experiments have already been
performed by the technique reviewed in this paper,

using either numerical methods, or one of the
many implementations of the algebraic solution
developed within the LEPEWWG.1 Examples
include, amongst others: the published combina-
tions of heavy flavour electroweak results [5] and
of Z boson parameters [6] measured at LEP1; the
preliminary combination of q %q; mþm� and tþt�

cross-sections, and of mþm� and tþt� forward–
backward asymmetries, at 12 different LEP
energies between 130 and 207 GeV [2]; the combi-
nations of published [3,7] and preliminary [4]
W decay branching fractions to ene; mnm and tnt
from W-pair events at LEP2; the preliminary
combination of W-pair production cross-sections
at eight different LEP2 energies between 183 and
207 GeV [4].

2. The method

The technique reviewed in this paper can be
applied to obtain combined estimates of N distinct
physical quantities, each of which has been
measured by one or more experiments, under the
hypothesis that all sources of errors are multi-
variate Gaussian distributed. It is also assumed
that the total covariance matrix for the input data
is positive definite, is known a priori and does not
depend on the results of the measurements.
A more general discussion of this method,

including its extension to the case where the input
measurements are linear combinations of the
observables to be determined, can be found in
many textbooks on multivariate analysis (see, for
example, Ref. [8]). The goal of this paper is to
formulate this procedure in the language used for
the combination of results produced by different
high-energy physics experiments, pointing out its
relevance and its properties in this context.
Estimating the input covariance matrix is one of

the most delicate steps in the combination of
results. This was discussed in Ref. [1] for a specific
example where many measurements of a single

1Two such implementations are those independently devel-

oped by I. Tomalin and J. Holt for the LEP2 difermion group

[2] and by the author of this paper for the LEP2 four-fermion

group [3,4].
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observable had to be combined. The case reviewed
in this paper presents the extra complication that
the correlations between measurements of differ-
ent observables must be determined in addition to
those between the many measurements of the same
quantity and to the errors on the individual results.
A general discussion of the techniques that may be
used and of the practical difficulties that may arise
in this task is, however, beyond the scope of this
paper. Only the effect of the correlations between
the input measurements on the combined results
and on their covariance matrix will be discussed in
Section 4, with the help of a few numerical
examples.

2.1. Best linear unbiased estimates

Using Greek indices ða; b; g;yÞ and Roman
indices ði; j; k;yÞ to denote observables and
measurements, respectively, let Xa ¼ fX1;y;XNg
be the true values of the N observables and yi ¼
fy1;y; yng the n experimental results. Let there be
naX1 measurements for each observable Xa; such
that n ¼ ð

PN
a¼1 naÞXN : The link between a mea-

surement yi and the observable Xa it refers to
will be expressed using the ðn � NÞ matrix U;
defined by

Uia ¼
1 if yi is a measurement of Xa;

0 if yi is not a measurement of Xa:

(
ð1Þ

Each of the n rows of U has one and only one
element equal to 1, whereas the ath of the N

columns of U has na elements equal to 1. As a
consequence, left multiplication by the matrixU of
the vector of observables X ; by contraction over
the index a; singles out for every i the observable
ðUX Þi ¼ ð

PN
a¼1 UiaXaÞ measured by a given result

yi; while
PN

a¼1 Uia ¼ 1 for every i: Conversely, left
multiplication of the vector of measurements y by
the transpose matrix *U; by contraction over the
index i; yields for every a the sum ð *UyÞa ¼
ð
Pn

i¼1 UiayiÞ of the na measurements of a given
observable Xa: In particular, the sum of any vector
quantity Vi over the index i can be rewritten as
ð
Pn

i¼1 ViÞ ¼
PN

a¼1ð *UV Þa to group together the
terms relative to measurements of the same
observable.

Given the measurements and their ðn � nÞ
covariance matrix

Mij ¼ covðyi; yjÞ ¼ covðyj ; yiÞ ¼ Mji; ð2Þ

symmetric and positive definite, the problem
consists in finding the ‘‘Best Linear Unbiased
Estimates’’ (BLUE) of the true values Xa of the N

observables, i.e. their estimates #xa such that:

(A) the #xa are linear combinations of the input
measurements yi;

(B) the #xa are unbiased estimates of the true
values Xa of the observables;

(C) the #xa are the best amongst all estimates of
the observables compatible with points A and
B, i.e. those of minimum variance.

In the presence of measurements of different
physical quantities, the most general way to
express condition A is

#xa ¼
Xn

i¼1

laiyi ¼
XN

b¼1

Xn

i¼1

laiUibyi; ð3Þ

where the estimate #xa of observable Xa is built as a
linear combination of all input results yi; irrespec-
tive of the observable which they measure.
Condition B requests that the expectation value

of each #xa be equal to the true value of the
corresponding observable, E ½ #xa
 ¼ Xa: Assuming
that each measurement is also unbiased, i.e.
E½Uibyi
 ¼ UibXb for every i and b; this translates
into a normalization constraint for the linear
weights of Eq. (3):Xn

i¼1

laiUib ¼ dab 8a; 8b; ð4Þ

where Kronecker’s dab equals 1 if a ¼ b and 0
otherwise. In other words, the na measurements
of observable Xa contribute to #xa with a total
weight 1, while each set of nb measurements of a
different observable Xb; with baa; contributes to
#xa with a total weight 0.
From Eqs. (2) and (3), the ðN � NÞ covariance

matrix for the linear estimates #xa is simply given by

covð #xa; #xbÞ ¼
Xn

i¼1

Xn

j¼1

laiMijlbj : ð5Þ
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The diagonal elements of this matrix represent the
variances of the #xa:

varð #xaÞ ¼ covð #xa; #xaÞ ¼
Xn

i¼1

Xn

j¼1

laiMijlaj ; ð6Þ

i.e. the squares of their total errors. Condition C
requires that the linear weights lai be determined
as those that minimize all variances in Eq. (6)
under the normalization constraints given in
Eq. (4). Since the weights lai and lbi for two
different estimates #xa and #xb; with aab; never
appear together in either of Eqs. (4) and (6), the
minimization problem can be solved separately for
the N observables. For every a; the n linear weights
lai can be obtained by introducing N Lagrange
multipliers Kab; as they must satisfy n differential
equations under the N constraints of Eq. (4).
Differentiating with respect to Kab and lai the
sum ½varð #xaÞ þ 2

PN
g¼1 Kagðdag �

Pn
j¼1 lajUjgÞ


yields

dab �
Pn

j¼1 lajUjb ¼ 0 8a; 8b;

ð
Pn

j¼1 MijlajÞ � ð
PN

g¼1 KagUigÞ ¼ 0 8a; 8i:

(

ð7Þ

UsingM�1 to denote the inverse of the covariance,
i.e. the ðn � nÞ symmetric matrix such thatPn

k¼1 MikM
�1
kj ¼

Pn
k¼1 M�1

ik Mkj ¼ dij ; it is easy
to show that the solutions to the linear system of
Eq. (7) are given by Kag ¼ ð *UM�1UÞ�1ag and

lai ¼
XN

b¼1

ð *UM�1UÞ�1ab ð *UM�1Þbi: ð8Þ

The coefficients lai clearly satisfy the normal-
ization condition in Eq. (4), since

Xn

i¼1

laiUig ¼
XN

b¼1

ð *UM�1UÞ�1ab ð *UM�1UÞbg ¼ dag:

ð9Þ

By substituting the weights of Eq. (8) into Eq. (5),
the covariance between the best linear unbiased
estimates #xa is found to be

covð #xa; #xbÞ ¼ ð *UM�1UÞ�1ab : ð10Þ

In deriving Eq. (8), it has been assumed that the
covariance matrix M can be inverted, i.e. that
none of the n input measurements can be written

as a linear combination of the others. If two of the
input measurements were 100% correlated, for
instance, M could not be inverted as the two
measurements would be redundant: one of them
would bring no additional information and should
then be removed from the combination. As
already pointed out in Ref. [1], one must in any
case be very careful in the presence of large
correlations between the input measurements, i.e.
if the discriminant of the covariance matrix is close
to zero: in that case, the weights of Eq. (8) may be
very large and the results of the combination may
become unstable with respect to slight biases in the
input measurements or misassessments of the
covariance matrix.

2.2. Linear combinations of observables

It is interesting to note that the #xa; determined
above as the BLUE of the N measured observables
Xa; also represent a linear base to obtain best
unbiased linear estimates of any observable which
can be built as a linear combination of the Xa:
More precisely, if Z is the true value of one such
observable,

Z ¼
XN

a¼1

aaXa; ð11Þ

with coefficients aa fixed a priori and not all
equal to 0, the best unbiased linear estimate
of Z determined from the n measurements yi of
ðUX Þi is

#z ¼
XN

a¼1

aa #xa; ð12Þ

where the #xa are those given in Section 2.1. The
variance of #z

varð#zÞ ¼
XN

a¼1

XN

b¼1

aaab covð #xa; #xbÞ ð13Þ

is, in fact, the minimum variance for any linear
unbiased estimate of Z; because the covariance
matrix for the #xa is smaller than the covariance
matrix of any other unbiased linear estimates of
Xa; as discussed more in detail in Ref. [8]. Some
examples of this statement will be given in
Section 4.
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2.3. w2 minimization

As in the case of a single physical quantity, the
problem of finding the linear unbiased estimates of
minimum variance for the N observables Xa is
equivalent to the problem of finding the estimates
#xa minimizing the sum

S ¼ � 2 logL ¼
Xn

i¼1

Xn

j¼1

½yi � ðU #xÞi


� M�1
ij ½yj � ðU #xÞj


¼
XN

a¼1

XN

b¼1

Xn

i¼1

Xn

j¼1

½Uiaðyi � #xaÞ


� M�1
ij ½Ujbðyj � #xbÞ
; ð14Þ

which measures the ‘‘distance’’ of the measure-
ments yi from the corresponding linear estimates
ðU #xÞi: Assuming that the experimental results yi

are multivariate Gaussian distributed, this corre-
sponds to maximizing the likelihood L that each
yi is centred around ðU #xÞi: By requiring that

qS

q #xa
¼ 0 8a; ð15Þ

in fact, without any a priori assumptions that the
combined estimates #xa be linear or unbiased, it can
easily be proved that Eqs. (3) and (8) must hold. In
particular, it is interesting to note that an exact
algebraic solution exists to Eq. (15), while this is
often solved using numerical methods only.
The minimum value of S; i.e. that calculated for

the best linear unbiased estimates #xa; is an
interesting quantity in itself. Assuming that all
errors are Gaussian, the minimum of S is
distributed as a w2 with ðn � NÞ degrees of freedom
and can be used to assess the extent to which the
individual results yi are consistent with the
combined estimates ðU #xÞi; i.e. with the hypothesis
that they measure the same observables ðUX Þi:

2.4. Breakdown of error contributions

A good feature of the BLUE method is that it
makes it very easy to break down the error matrix
for the combined estimates into its individual
components, such as those of statistical and
systematic origin. Suppose, for instance, that U

independent sources of uncertainty have been
identified, i.e. that the total covariance matrix
Mij for the input measurements can be written as
the sum

Mij ¼ covðyi; yjÞ ¼
XU

u¼1

cov½u
ðyi; yjÞ

¼
XU

u¼1

M
½u

ij : ð16Þ

The individual contributions to M can be sepa-
rately propagated to the covariance matrix for the
combined estimates #xa; yielding

covð #xa; #xbÞ ¼
XU

u¼1

cov½u
ð #xa; #xbÞ: ð17Þ

From Eq. (5), the contribution from the uth error
source is simply given by

cov½u
ð #xa; #xbÞ ¼
Xn

i¼1

Xn

j¼1

laiM
½u

ij lbj ; ð18Þ

which can be computed exactly using the weights
lai of Eq. (8). The detailed breakdown of the error
matrix is thus very simple to obtain if the problem
is solved using the BLUE method: the weights lai

are already available for free, as they are needed to
compute the central values and the total covar-
iance matrix for the combined estimates #xa

according to Eqs. (3) and (5).
For comparison, the detailed breakdown of the

error matrix can also be obtained if results are
combined using a numerical approach instead of
the BLUE method, although more minimizations
are needed than that of the w2 in Eq. (15) that
yields the central values and the total covariance of
the #xa: This can be achieved, for instance, by the
following technique, which was used [9] for the
combination of LEP heavy-flavour results de-
scribed in Ref. [5]. For every i; a new sum SðDyiÞ

may be built, analogous to that in Eq. (14),
assuming that the value of the ith input measure-
ment is shifted by a fixed amount to yi þ Dyi; while
the values of all other yj (with jai) are unchanged.
Since the problem is linear, the differences between
the #xa and the results of the numerical minimiza-
tion of SðDyiÞ may be used to derive, for every i; the
N derivatives q #xa=qyi: From elementary error
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propagation [7], the individual contributions
to the covariance of #xa and #xb may then be
computed as

cov½u
ð #xa; #xbÞ

¼
Xn

i¼1

Xn

j¼1

q #xa

qyi

� �
cov½u
ðyi; yjÞ
� � q #xb

qyj

� �

¼
Xn

i¼1

Xn

j¼1

q #xa

qyi

� �
M

½u

ij

q #xb

qyj

� �
: ð19Þ

This expression is strictly equivalent to Eq. (18),
because Eq. (3) implies that

q #xa

qyi

¼ lai 8a; 8i: ð20Þ

In other words, the advantage of the BLUE
technique over a numerical approach is that it is
simpler and more elegant: the weights lai are
determined a priori from matrix algebra and
are then used to compute both the combined
estimates and all contributions to the error
matrix, whereas, when the problem is solved by
numerical methods, the derivatives q #xa=qyi must
be determined a posteriori, from the results of
more than one numerical minimizations, and are
only used to compute the detailed breakdown of
the error matrix. The advantage of the numerical
approach, instead, is that it is more flexible,
because it can be used also when the input
measurements depend on one another or when
the problem is not strictly linear or Gaussian, as
pointed out in Ref. [5].

3. Effects of the correlations between different

observables

In the absence of correlations between the
measurements of different observables, it is easy
to show that the method described in the previous
section reduces to the simple approach of finding
the best estimate of each observable from its
measurements alone, using the technique of Ref.
[1] in each case.
Let M0 be the ðn � nÞ covariance matrix to

which M reduces when neglecting all correlations

between different observables:

M0
ij ¼

Mij if yi and yj measure the same

observable;

0 if yi and yj measure different

observables:

8>>><
>>>:

ð21Þ

Assuming for simplicity that the index i over the yi

is such that the na measurements of the same
observable Xa are grouped together and ordered
for increasing values of a; this means that M0 is a
block-diagonal matrix with N blocks, each of
dimensions ðna � naÞ: Formally, Eq. (21) implies
that

M0
ijUiaUjb ¼ MijUiaUjbdab 8i; 8j; 8a; 8b; ð22Þ

so that M0 can be rewritten as

M0
ij ¼

XN

a¼1

XN

b¼1

M0
ijUiaUjb ¼

XN

a¼1

MijUiaUja

¼
XN

a¼1

ðM0ÞðaÞij ; ð23Þ

i.e. as the sum of N matrices ðM0ÞðaÞij ¼ MijUiaUja;
each of which has all elements equal to zero except
for one block of dimensions ðna � naÞ:
The inverse covariance M0�1 is also a block-

diagonal matrix

M0�1
ij ¼

XN

a¼1

XN

b¼1

M0�1
ij UiaUjb ¼

XN

a¼1

M0�1
ij UiaUja

¼
XN

a¼1

ðM0�1ÞðaÞij ; ð24Þ

because it can be written as the sum of N matrices
ðM0�1ÞðaÞij ¼ M0�1

ij UiaUja; each of which, of dimen-
sions ðn � nÞ; has all elements equal to zero except
for one ðna � naÞ block which is the inverse of the
corresponding block of ðM0ÞðaÞ:Xn

k¼1

ðM0�1ÞðaÞik ðM0ÞðaÞkj ¼
Xn

k¼1

ðM0ÞðaÞik ðM0�1ÞðaÞkj

¼UiaUjadij : ð25Þ

In the absence of correlations between different
observables, ð *UM�1UÞ in Eq. (8) thus reduces to
the ðN � NÞ diagonal matrix ð *UM0�1UÞ; and the
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best linear unbiased estimates of the N observables
are simply given by

#x0
a ¼

Xn

i¼1

l0aiyi ¼
Xn

i¼1

Uial
0
aiyi; ð26Þ

where the linear weight

l0ai ¼
½ *UðM0�1ÞðaÞ
ai

½ *UðM0�1ÞðaÞU
aa

¼
½
Pn

j¼1 ðM0�1ÞðaÞji 


½
Pn

k¼1

Pn
j¼1 ðM0�1ÞðaÞjk 


; ð27Þ

with which an experimental result yi contributes to
the BLUE of observable Xa; is 0 unless yi is a
measurement of Xa: Eqs. (26) and (27) above are
equivalent to Eqs. (3) and (6) of Ref. [1], proving
that the method presented reduces to that of Ref.
[1] if the problem is that of finding best linear
unbiased estimates for N uncorrelated measured
observables.
Although the #xa derived above only represent

best linear unbiased estimates in the absence of
correlations between different observables, it is
interesting to consider them as ‘‘approximate’’
solutions of the BLUE problem when such
correlations exist but are ignored, i.e. when the
covariance matrix for the measurements isM; but
M0 is used in Eq. (8). In particular, provided that
the yi are unbiased, the #x0

a still represent unbiased
estimates of the true values Xa of the observables,
although not those of minimum variance. In the
following section, the #x0

a will be used to study how
the properties of BLUE solutions change in the
presence or in the absence of correlations between
measurements of different observables. The mini-
mum variances and w2 values obtained in the two
cases will be compared in Sections 3.1 and 3.2,
respectively.

3.1. Comparison of minimum variances

As already noted in Section 2.1, the problem of
determining best linear unbiased estimates for a set
of N observables always ‘‘diagonalizes’’ to that of
finding the BLUE of each observable as the
solution to an independent minimization problem,
even when the measurements of different obser-

vables are correlated. For each Xa; in particular,
the unbiased linear estimate of minimum variance
#xa is obtained by minimizing the quadratic form of
Eq. (6) in the ðn � NÞ-dimensional linear space
spanned by the n weights lai; under the N

normalization constraints of Eq. (4). The function
to minimize

var
Xn

i¼1

laiyi

 !
¼
Xn

i¼1

Xn

j¼1

laiMijlaj

¼
XN

b¼1

XN

g¼1

Xn

i¼1

Xn

j¼1

� laiMijlajUibUjg ð28Þ

can also be rewritten as

var
Xn

i¼1

lai yi

 !
¼

Xn

i¼1

Xn

j¼1

laiMijlajUiaUja

 !

þ
X1;y;N

bðbaaÞ

Xn

i¼1

Xn

j¼1

laiMijlajUibUjb

 !

þ
X1;y;N

b;gðbagÞ

Xn

i¼1

Xn

j¼1

laiMijlajUibUjg

 !
; ð29Þ

where the ðn � nÞ non-zero terms of Eq. (28)
have been grouped into three lines contain-
ing, respectively, ðna � naÞ;

P1;y;N
b ðbaaÞðnb � nbÞ andP1;y;N

b;g ðbagÞðnb � ngÞ terms. The expression above
represents the functional dependence, on the
coefficients lai and the matrixMij ; of the variance
of a generic linear combination ð

Pn
i¼1 laiyiÞ of the

measurements yi; whether or not this function is
calculated at its minimum. This illustrates that the
variance of the unbiased estimate #x0

a; defined by
the coefficients l0ai of Eq. (27), is the same in the
presence and in the absence of correlations
between different observables, i.e. whether M or
M0 is used in Eq. (29). Since l0ai ¼ 0; if yi is not a
measurement of Xa; in fact, both the second and
third lines are 0 and only the first remains:

varðMÞð #x0
aÞ ¼

Xn

i¼1

Xn

j¼1

l0aiMijl
0
ajUiaUja

¼
Xn

i¼1

Xn

j¼1

l0aiM
0
ijl

0
ajUiaUja

¼ varðM
0Þð #x0

aÞ: ð30Þ
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On the other hand, in the presence of correlations
between different observables, #xa is the unbiased
linear estimate of minimum variance, so that
varðMÞð #xaÞpvarðMÞð #x0

aÞ: This implies that

varðMÞð #xaÞpvarðM
0Þð #x0

aÞ: ð31Þ

In other words, in the presence of correlations
between measurements of different observables,
whether positive or negative, the error on each
combined estimate is always lower than in their
absence (or, at most, equal). Neglecting these
correlations leads to a loss of information, as the
combined estimate for each observable Xa is built
only from the na measurements of Xa; conversely,
useful information is added if the measurements of
all other observables are also included. In fact, the
reduction in variance is only possible thanks to the
measurements of observables other than Xa; and
more particularly to the third line of Eq. (29),
whose contribution is generally negative.
The inequality in Eq. (31) can also be under-

stood by realizing that varðMÞð #xaÞ is the absolute
minimum of the variance of Eq. (29) in the full
ðn � NÞ-dimensional linear space spanned by
weights lai; under the N normalization constraints
of Eq. (4), while varðM

0Þð #x0
aÞ is the minimum of the

same quadratic form in a smaller ðna � 1Þ-dimen-
sional linear subspace defined by the additional
constraint that l0ia ¼ 0 if yi is not a measurement
of Xa:
In the presence of correlations between mea-

surements of different observables, even if the
variance for the ‘‘approximate’’ solution #x0

a in
Eq. (29) is the same whether it is computed using
M orM0; all such correlations must, of course, be
taken into account if one needs to analyse several
observables at the same time. In particular, all
correlations must be propagated to the covar-
iances between the #xa; according to Eq. (5): this is
important, for instance, to estimate the variance of
a quantity which depends on more than one #xa; or
if measurements of different observables are used
at the same time in a theoretical framework which
predicts values for them all. As discussed in
Section 3.2, it is also essential to take into account
these correlations to estimate the w2 for the set of
all input measurements, and to assess the extent to
which these are compatible with one another. In

all these situations, ignoring the correlations
between the measurements of different observables
leads to wrong results, just like it happens in the
combination of measurements of one single
observable if their correlations are ignored. Some
examples will be presented in Section 4.

3.2. Comparison of minimum w2

Comparing the w2 values for the combination of
results in the presence and in the absence of
correlations between different observables is not as
easy as comparing the variances obtained in the
two cases. In the presence of correlations, best
linear unbiased estimates are obtained by mini-
mizing the sum S of Eq. (14). In the absence of
correlations,M0 must be used instead ofM and S

reduces to the sum S0 ¼
PN

a¼1ðS
0ÞðaÞ of N in-

dependent terms:

ðS0ÞðaÞ ¼
Xn

i¼1

Xn

j¼1

ðyi � #xaÞðM0�1ÞðaÞij ðyj � #xaÞ; ð32Þ

which can be separately minimized to yield the
solutions #xa given before.
Both sums S and S0 have well-defined meanings,

but only under different circumstances, as their
functional dependence on the weights lai is not
the same. The minimum values of S and S0;
respectively, in the presence and in the absence
of correlations between measurements of
different observables (i.e. the values computed
for the corresponding BLUE #xa and #x0

a), are both
distributed as a w2 with ðn � NÞ degrees of
freedom. It does not make sense, instead, to
compute S for #x0

a; or S0 for #xa; as these values
would not represent the minima of S and S0: In
particular, there is no simple relationship between
the w2 for the BLUE combination in the absence
and in the presence of correlations between
measurements of different observables (i.e., be-
tween the minima of S0 and S): sometimes, such
correlations may impose tighter constraints on the
measurements and result in larger w2 values,
whereas at other times the contrary may happen.
While the variances of the BLUE are completely
determined by the covariance matrix for the
measurements (as shown for instance by
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Eq. (10)), the comparison of w2 values is further
complicated by the fact that these values depend
on the central values of the input measurements.
Simple examples of these statements will be
presented in Section 4.
Finally, it is interesting to note that each of the

ðS0ÞðaÞ also has a well-defined meaning, as it is
obtained using only the measurements of Xa and
the corresponding covariance matrix. The mini-
mum of ðS0ÞðaÞ is that computed for the BLUE #x0

a
and is distributed as a w2 with ðna � 1Þ degrees of
freedom. Whether or not correlations between

measurements of different observables exist, this is
the correct quantity to use if one wants to measure
the internal consistency of the subset of all
measurements of Xa alone, ignoring the measure-
ments of all other observables.

4. Examples

For the purpose of illustration, the application
of the method to a fictitious example is discussed
in this section. The case of two experiments A
and B measuring the branching fractions of the
W boson in the two decay channels to electrons,
Be; and to taus, Bt; is considered. The problem
consists in finding the best linear unbiased
estimates #Be and #Bt; given the four measure-
ments

Be
A ¼ ð10:5071:00Þ%;

Be
B ¼ ð13:5073:00Þ%;

Bt
A ¼ ð9:5073:00Þ%;

Bt
B ¼ ð14:0073:00Þ%; ð33Þ

and their covariance matrix. Various examples
will be presented in the following section, differ-
ing only in the assumptions made about the

correlations between the four measurements in
Eq. (33).
All results presented below have been obtained

using the formulas derived in Section 2; the central
values and total errors on #Be and #Bt have also been
cross-checked by the numerical minimization of
the w2 using Minuit [10]. Using the same vector
notation adopted in Section 2, let Bi ¼
fBe

A;B
e
B;B

t
A;B

t
Bg and Ba ¼ fBe;Btg denote the

four measurements and the true values of the two
observables, respectively. The covariance matrix
defined in Eq. (2) is then given explicitly by

and the matrix U of Eq. (1) by

U ¼

1 0

1 0

0 1

0 1

0
BBB@

1
CCCA; ð35Þ

where Uia ¼ 1 if Bi is a measurement of obser-
vable Ba; 0 otherwise.
In the framework of the Standard Model, it is

common [3,4] to measure the branching fractions
of the W boson to leptons not only in the three
separate decay channels to electrons, muons and
taus, but also under the (so-called ‘‘lepton
universality’’) assumption that the three are equal,
Bc ¼ Be ¼ Bm ¼ Bt: In the examples considered in
this section, a best linear unbiased estimate #Bc will
also be derived by combining the four experi-
mental results for different channels and from
different experiments, Be

A;B
e
B;B

t
A;B

t
B; as if they

were all measurements of the same observable Bc:
The same formulas needed for the combination
without the assumption of lepton universality will
be used, with the differences that the vector of
observables has only one element Ba ¼ fBcg and
that U reduces to a ð4� 1Þ matrix whose
components are all 1.

M ¼

covðBe
A;B

e
AÞ covðBe

A;B
e
BÞ covðBe

A;B
t
AÞ covðBe

A;B
t
BÞ

covðBe
B;B

e
AÞ covðBe

B;B
e
BÞ covðBe

B;B
t
AÞ covðBe

B;B
t
BÞ

covðBt
A;B

e
AÞ covðBt

A;B
e
BÞ covðBt

A;B
t
AÞ covðBt

A;B
t
BÞ

covðBt
B;B

e
AÞ covðBt

B;B
e
BÞ covðBt

B;B
t
AÞ covðBt

B;B
t
BÞ

0
BBB@

1
CCCA ð34Þ
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4.1. No correlations

In the absence of any correlations, the covar-
iance matrix for the measurements listed in
Eq. (33) is simply

M ¼

1:00 0 0 0

0 9:00 0 0

0 0 9:00 0

0 0 0 9:00

0
BBB@

1
CCCA� 10�4: ð36Þ

As intuitively expected, the best linear unbiased
estimates for Be and Bt are

#Be ¼ ð0:900�Be
AÞ þ ð0:100�Be

BÞ

þ ð0:000�Bt
AÞ þ ð0:000�Bt

BÞ;

#Bt ¼ ð0:000�Be
AÞ þ ð0:000�Be

BÞ

þ ð0:500�Bt
AÞ þ ð0:500�Bt

BÞ; ð37Þ

where the two measurements of each branching
fraction contribute only to the combined estimate
for that decay channel, each with a linear weight
inversely proportional to the square of its error.
This leads to

#Be ¼ ð10:8070:95Þ%;

#Bt ¼ ð11:7572:12Þ%; ð38Þ

where the errors on Be and Bt are reduced with
respect to the smaller of the errors on the input
measurements, by 1=

ffiffiffiffiffiffiffiffiffiffi
10=9

p
C1=

ffiffiffiffiffiffiffi
1:1

p
and 1=

ffiffiffi
2

p
;

respectively. The w2 for the combinations are 0.90
and 1.12, respectively, for 1 degree of freedom,
summing up to 2.02 for 2 degrees of freedom for
the joint combination of results. The covariance
between #Be and #Bt is, of course, 0.
Similarly, the combination under the assump-

tion of lepton universality yields

#Bc ¼ ð0:750�Be
AÞ þ ð0:083�Be

BÞ

þ ð0:083�Bt
AÞ þ ð0:083�Bt

BÞ; ð39Þ

where the four linear weights for #Bc are inversely
proportional to the squares of the errors on the
four measurements. Numerically,

#Bc ¼ ð10:9670:87Þ%; ð40Þ

with a w2 of 2.19 for 3 degrees of freedom.

4.2. Correlations between measurements of the

same observable

Assume now that a +15% correlation exists
between the measurements of Be performed by A
and B, for the same errors given before. This could
reflect a common systematic error affecting both
experiments in the same direction, for instance a
theoretical uncertainty on the production cross-
section for a background process in the electron
channel. The covariance matrix is then

M ¼

1:00 0:45 0 0

0:45 9:00 0 0

0 0 9:00 0

0 0 0 9:00

0
BBB@

1
CCCA� 10�4: ð41Þ

The combination of Bt; of course, remains un-
changed, while the BLUE for Be is now given by
#Be ¼ ð0:940�Be

AÞ þ ð0:060�Be
BÞ;

#Be ¼ ð10:6870:98Þ%;

#Bt ¼ ð11:7572:12Þ%: ð42Þ

The error on #Be is larger than the 0.95% found in
the absence of correlations, because the measure-
ments by A and B are not independent and their
combination does not add as much information as
required. As discussed in detail in Ref. [1], this
error would be as large as that on the measurement
with least variance, i.e. 1.00%, in the case that the
correlation were equal to sBe

A
=sBe

B
¼ 33% (indicat-

ing a common contribution of 1.00% to both
DBe

A and DBe
B from a fully correlated error

source), while it would decrease again for larger
correlations.
The w2 for combining Be and Bt are now 0.99

and 1.12, respectively, for 1 degree of freedom,
summing up to 2.11 for 2 degrees of freedom for
the joint combination. The increased w2 for the
combination of Be; with respect to 0.90 in
the absence of correlations, reflects the fact that
the +15% correlation makes the two measure-
ments of Be less compatible with each other: the
expected error on ðBe

A �Be
BÞ is smaller, while the

same measured central values are assumed. Of
course, the covariance between #Be and #Bt is 0 also
in this case.
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Although this is a less frequent case, Be
A and

Be
B can also be negatively correlated, for instance

if the same source of systematic error affects
the two measurements in opposite directions.
For a �15% correlation, the BLUE for Be is
#Be ¼ ð0:867�Be

AÞ þ ð0:133�Be
BÞ; or, numeri-

cally, #Be ¼ ð10:9070:90Þ%: The uncertainty on
#Be is in this case smaller than the 0.95% observed
in the absence of correlations, as the decrease in
the error on ðBe

A þBe
BÞ makes it possible to better

constrain the value of Be; around which both Be
A

and Be
B are distributed. The w2 for the combina-

tion of Be is also reduced, to 0.83 for 1 degree of
freedom, as the worse resolution on ðBe

A �Be
BÞ

allows the two measurements to disagree more
with each other.
Similar trends to those observed for Be can be

noted for the combinations of Bc performed under
the assumption of lepton universality. For a
+15% correlation between Be

A and Be
B; the

error on

#Bc ¼ ð10:8770:89Þ%; ð43Þ

and the w2 value of 2.32 for 3 degrees of freedom
are both larger than the 0.87% and 2.19 observed
for no correlations. Similarly, for a �15% correla-
tion between Be

A and Be
B; the error on #Bc ¼

ð11:0370:83Þ% and the w2 of 2.09 for 3 degrees of
freedom are smaller than those in the absence of
correlations.

4.3. Correlations between measurements of

different observables

4.3.1. Positive correlations

The effect of correlations between measure-
ments of different observables is best understood
by discussing a very extreme case: assume now that
a +99.5% correlation exists between the measure-
ments of Be and Bt performed by B, while the
results of A and B are uncorrelated. This means
that experiment B can measure the difference
ðBe � BtÞ with an extremely good resolution. This
situation could be imagined, for instance, for an
experiment with very small statistical errors,
limited only by a systematic error affecting both
channels in the same way. In this case, the

covariance matrix is

M ¼

1:00 0 0 0

0 9:00 0 8:96

0 0 9:00 0

0 8:96 0 9:00

0
BBB@

1
CCCA� 10�4; ð44Þ

and the best linear unbiased estimates for Be and
Bt are found to be

#Be ¼ ð0:820�Be
AÞ þ ð0:180�Be

BÞ

þ ð0:090�Bt
AÞ þ ð�0:090�Bt

BÞ;

#Bt ¼ ð0:808�Be
AÞ þ ð�0:808�Be

BÞ

þ ð0:098�Bt
AÞ þ ð0:902�Bt

BÞ: ð45Þ

This leads to

#Be ¼ ð10:6470:91Þ%;

#Bt ¼ ð11:1470:94Þ%; ð46Þ

where the errors on #Be and #Bt are significantly
smaller than the 0.95% and 2.12% observed in the
absence of correlations. In both cases, error
reduction is caused by the large negative contribu-
tion of the third line of Eq. (29).
It is particularly interesting to note that the

uncertainty on #Bt is now comparable to that on #Be;
and that the correlation between the two combined
estimates, computed using Eq. (5), is equal to
+94.8%. This indicates that the good resolution
on the measurement of ðBe � BtÞ performed by
experiment B is fully exploited in the combination.
Indeed, the difference between #Be and #Bt in
Eq. (45) is essentially dictated by that between
Be
B and Bt

B; as

ð #Be � #BtÞ ¼ ð0:012�Be
AÞ þ ð0:988�Be

BÞ

þ ð�0:008�Bt
AÞ þ ð�0:992�Bt

BÞ: ð47Þ

The uncertainty on this difference is only 0.29%,
much smaller than the uncertainties on either of #Be

or #Bt; and essentially equal to the 0.30% resolu-
tion of experiment B on ðBe � BtÞ: As discussed in
Section 2.2, it could actually be shown that the
linear unbiased estimate of ðBe � BtÞ given in
Eq. (47), derived from the two individual BLUE
for Be and Bt; is that of minimum variance.
The w2 for the combination, 1.23 for 2 degrees of

freedom, is also smaller than the 2.02 obtained in
the absence of correlations. As already observed in
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Section 3.2, this does not depend only on the
correlation between Be

B and Bt
B; but also on the

measured central values assumed in this example.
In particular, while the large positive correlation
between Be

B and Bt
B has the effect that the

contribution to the w2 from their difference is
numerically more relevant than that from their
sum, this only results in a smaller w2 value than
that obtained in the absence of correlations
because, at the same time, the agreement between
the branching ratios measured by experiments A
and B is much better for their difference than for
their sum. As a consequence, the contributions to
the w2 from the two sets of measurements by
experiments A and B, which can be calculated
separately in this case as there are no correlations
between them, are both smaller than those
obtained in the absence of correlations between
Be
B and Bt

B: The contribution from A is smaller
because #Be and #Bt are closer to Be

A and Bt
A; the

contribution from B decreases because the differ-
ence ð #Be � #BtÞ remains very close to ðBe

B �Bt
BÞ

even if the worse resolution on ðBe
B þBt

BÞ allows
#Be and #Bt to move away from Be

B and Bt
B:

Not surprisingly, the effects of the large positive
correlation between Be

B and Bt
B on the results of

the lepton universality fit are quite different, and
no decrease in errors or in w2 values is observed.
The uncertainty on

#Bc ¼ ð10:7170:90Þ%; ð48Þ

and the w2 value of 4.01 for 3 degrees of freedom
are, instead, both larger than the 0.87% and 2.19
observed in the absence of any correlations. Since
the four results Be

A;B
e
B;B

t
A and Bt

B are treated as
if they were all measurements of the same
observable Bc; the situation is similar to that
described in Section 4.2 for a +15% correlation
between Be

A and Be
B:

4.3.2. Negative correlations

It is important to realize that the presence of
correlations between the measurements of differ-
ent observables, whether positive or negative, may
only decrease the error on the combined estimate
of each observable, with respect to the case when
such correlations are absent. This is quite different
from the effects of correlations between measure-

ments of the same observable, which tend to
produce opposite results when they are of opposite
sign.
In the example above, let the correlation

between Be
A and Be

B be equal to �99:5%: Negative
correlations might, for instance, arise due to the
mis-identification of an electron as a t and vice
versa, although never quite as large. While the
central values of the combined estimates are of
course quite different, the errors on the BLUE #Be

and #Bt are found to be exactly the same as those
given in Eq. (46) for the case of a +99.5%
correlation:

#Be ¼ ð11:4470:91Þ%
#Bt ¼ ð15:9870:94Þ%: ð49Þ

Experiment B has in this case a good resolution on
the sum of Be

B and Bt
B; rather than on their

difference, which results in a very small error of
0.29% on ð #Be þ #BtÞ and in a correlation of �94:8%
between #Be and #Bt:
Even if the errors on the BLUE are the same as

those observed for a +99.5% correlation, a
different trend is observed for the w2 for the
combination, which in that case was smaller than
in the absence of correlations; as previously
discussed, this is due not only to the correlations
but also to the assumptions about the measured
central values. For 3 degrees of freedom, the w2

rises now sharply to 6.07 from the 2.02 obtained in
the absence of any correlations. The increase is due
to the larger w2 contributions from Be

A and
especially Bt

A; as #Be and #Bt are forced to move
closer to Be

B and Bt
B; far away from Be

A and Bt
A:

While the effects of a +99.5% or �99:5%
correlation between Be

A and Be
B on the error on

the BLUE are strictly the same when two
independent estimates #Be and #Bt are determined,
these two cases are quite different for the lepton
universality fit, as these values come to represent
correlations between measurements of the same
observables. The uncertainty on

#Bc ¼ ð13:6770:15Þ% ð50Þ

is now much smaller than the 0.87% observed in
the absence of any correlations, and corresponds
essentially to the resolution on ðBe

B þBt
BÞ=2: The

w2 for the fit explodes instead to 12.3 for 3 degrees
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of freedom, from the 2.19 observed for no
correlations: this is due to the large increases in
the w2 contributions from Bt

A and especially Be
A;

already observed in the case of the combination
without lepton universality.

4.3.3. Breakdown of error contributions

Although not very realistic, the two cases
considered in Sections 4.3.1 and 4.3.2 are good
examples to show how this method makes it easy
to identify, in the errors on the BLUE, the
contributions of the individual uncertainties on
the input measurements. One can assume for
instance that experiment B has very small statis-
tical errors, having collected large samples of data,
while it is limited by large systematic errors:

Be
A=% ¼ 10:5071:00ðstat:Þ;

Be
B=% ¼ 13:5070:21ðstat:Þ72:99ðsyst:Þ;

Bt
A=% ¼ 9:5073:00ðstat:Þ;

Bt
B=% ¼ 14:0070:21ðstat:Þ72:99ðsyst:Þ: ð51Þ

One can further assume that all statistical errors
are uncorrelated, while systematic errors on Be

B

and Bt
B are 100% positively or negatively corre-

lated, for the two cases considered in Sections 4.3.1
and 4.3.2, respectively. The covariance matrix of
Eq. (44) can then be written as the sum of two
contributions from statistical and systematic er-
rors:

M

10�4
¼

1:00 0 0 0

0 0:04 0 0

0 0 9:00 0

0 0 0 0:04

0
BBB@

1
CCCA

ðstat:Þ

þ

0 0 0 0

0 8:96 0 78:96

0 0 0 0

0 78:96 0 8:96

0
BBB@

1
CCCA

ðsyst:Þ

; ð52Þ

where the first matrix could be split up further as
the sum of the uncorrelated contributions from the
statistical errors on the four experiments. For
comparison, individual error contributions will
also be computed assuming that the systematic
errors in Eq. (51) are uncorrelated, i.e. for the
situation considered in Section 4.1: in that case,

the two relevant covariance matrices are those
given in Eq. (52), assuming that all non-diagonal
terms are 0 in the second.
Computing weights according to Eq. (8), and

variances according to Eq. (18), the results pre-
viously given in Eqs. (46), (38) and (49) can then
be rewritten as

#Be=% ¼ 10:6470:91 ¼ 10:6470:86ðstat:Þ

70:27ðsyst:Þ;

#Bt=% ¼ 11:1470:94 ¼ 11:1470:90ðstat:Þ

70:28ðsyst:Þ ð53Þ

if the systematic errors on Be
B and Bt

B are 100%
correlated,

#Be=% ¼ 10:8070:95 ¼ 10:8070:90ðstat:Þ

70:30ðsyst:Þ;

#Bt=% ¼ 11:7572:12 ¼ 11:7571:50ðstat:Þ

71:50ðsyst:Þ ð54Þ

if they are uncorrelated, and

#Be=% ¼ 11:4470:91 ¼ 11:4470:86ðstat:Þ

70:27ðsyst:Þ;

#Bt=% ¼ 15:9870:94 ¼ 15:9870:90ðstat:Þ

70:28ðsyst:Þ ð55Þ

if the correlation between them is �100%; respec-
tively. The statistical errors on #Be and #Bt in
Eq. (53) are highly correlated as they are domi-
nated by the statistical error on Be

A; which
contributes with a large positive weight to the
two BLUE. The same is true in Eq. (55), with the
only difference that Be

A contributes with large
weights of opposite sign to #Be and #Bt; so that the
correlation between their statistical errors is
negative.
The comparison of Eq. (54) with Eqs. (53) and

(55) shows that, in the absence of correlations
between the measurements of different observa-
bles, the individual contributions to the errors on
the BLUE tend to be larger as they must add up to
larger total uncertainties. In particular, the statis-
tical and systematic error contributions computed
by neglecting these correlations, for instance using
the formulas of Ref. [1] for the combination of one
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physical quantity, cannot be used to estimate the
corresponding error contributions in the presence
of correlations, as they would generally result in
overestimated values.
It is also interesting to compare these results to

those obtained by assuming that only statistical
errors are present in Eq. (51), while the systematic
errors are all equal to 0. In this case, the
combination for #Be and #Bt yields

#Be=% ¼ 13:3770:21 ¼ 13:3770:21ðstat:Þ

70:00ðsyst:Þ;

#Bt=% ¼ 13:9870:21 ¼ 13:9870:21ðstat:Þ

70:00ðsyst:Þ; ð56Þ

with a w2 of 10.85 for 2 degrees of freedom. The
resulting statistical errors on #Be and #Bt are much
smaller than the statistical contributions to the
uncertainties on #Be and #Bt in the presence of
7100% correlated systematic errors, given in
Eqs. (53) and (55). In other words, it is dangerous
to approximate the statistical contributions to
the errors on the BLUE in the presence of
correlated systematic uncertainties by the ‘‘statis-
tical errors in the absence of systematics’’, as
this may lead to largely underestimated values
for them.
As for the results of the lepton universality fits,

previously given in Eqs. (48), (40) and (50), they
can now be rewritten as

#Bc=% ¼ 10:7170:90 ¼ 10:7170:86ðstat:Þ

70:27ðsyst:Þ ð57Þ

if the systematic errors on Be
B and Bt

B are 100%
correlated,

#Bc=% ¼ 10:9670:87 ¼ 10:9670:79ðstat:Þ

70:35ðsyst:Þ ð58Þ

if they are uncorrelated, and

#Bc=% ¼ 13:6770:15 ¼ 13:6770:15ðstat:Þ

70:00ðsyst:Þ ð59Þ

if the correlation between them is �100%; respec-
tively. Under the assumption that systematic
errors are equal to zero, the lepton universality

fit yields instead

#Bc=% ¼ 13:6770:15 ¼ 13:6770:15ðstat:Þ

70:00ðsyst:Þ; ð60Þ

with a w2 of 15.04 for 3 degrees of freedom. It
is not surprising that this result is essentially the
same as that obtained in Eq. (59) under the
assumption that the correlation between
the systematic errors on Be

B and Bt
B is �100%: in

both situations, in fact, Be
B and Bt

B contribute to
the BLUE with equal weights, so that the total
systematic error contribution from the two mea-
surements is in any case equal to zero. The linear
weights for ðBe

B þBt
BÞ=2; Be

A and Bt
A are thus

exactly the same in Eqs. (59) and (60).

5. Conclusions

A ‘‘best linear unbiased estimate’’ method to
combine correlated measurements of many differ-
ent physical quantities has been reviewed. Various
properties of this technique have been discussed in
the general case and for the specific example of two
fictitious experiments. It has been observed, in
particular, that any correlations between the
measurements of different observables, whether
positive or negative, always result in decreasing the
combined errors on each observable, with respect
to the case where these are not taken into account.
The BLUE method is an analytical solution to

the problem of minimizing the w2 for the combina-
tion of the measurements. As such, it provides a
better means of understanding the results of the
combination than a numerical approach, and a
simpler means of correctly estimating the indivi-
dual contributions to the errors on the combined
results.
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