Search for a "boosted" Higgs with the CMS-Experiment

Bundesministerium für Bildung und Forschung

Peter Vonhoegen Thomas Hebbeker Arnd Meyer

Helmholtz Alliance

Physikalisches Institut III A, RWTH Aachen

2nd December 2010

Outline

- The Higgs Boson
- The light Higgs Boson
- The "boosted Higgs"- channel
- The fat jet algorithm
- The cut based analysis
- Conclusion

The Higgs Boson

- Why do we need the Higgs?
 - To explain the masses of bosons and fermions
 - To avoid too large cross sections in W-W-scattering

The light Higgs Boson

- Most likely decay channel for a light Higgs: $\, H
ightarrow b \overline{b} \,$

The light Higgs Boson

- At hadron-colliders: large QCD-backgrounds
 - \implies Look at associated Higgs production with a leptonically decaying vector boson to get a clear event signature: $~{\bf q} \bar{{\bf q}} \rightarrow {\bf HV}$

• 3 sub-channels:

- Main light Higgs search channels at TeVatron!
- But until now mostly ignored at LHC, because at LHC energies the QCD background seems too difficult to suppress
- New idea for a way out: look at the boosted regime!

- H and V back to back, both with large transverse momenta

(Butterworth et al., arxiv: [0802.2470])

- Advantages of a boosted Higgs:
 - Vector boson and Higgs are all central
 - Better b-tagging and jet resolution
 - Excellent background rejection (QCD, ttbar)
 - $\mathbf{Z}
 ightarrow
 u
 u$ becomes visible (high MET)
 - \Rightarrow Clean event topology
 - \implies Good significance
- Disadvantage:
 - Only 5 % of the produced Higgs $(q\bar{q} \to HV)\,$ have a sufficiently high transverse momentum $(p_t\gtrsim 200~{\rm GeV})$
 - \Rightarrow need high integrated luminosity (pprox 30 ${
 m fb}^{-1}$)

but the other light Higgs channels like $H\to\gamma\gamma$ need luminosities of the same order!

b

e,μ

н

w

- Apparent problem to be solved: H has high p_{τ}
 - \Rightarrow b's so close together, that conventional jet reconstruction lumps them together as one single fat jet

The fat jet algorithm - Clustering

- Use the iterative Cambridge/Aachen-jet-cluster-algorithm to reconstruct the fat jet:
 - Calculate the angular distance $\Delta R_{ij}=\sqrt{\Delta y_{ij}^2+\Delta\phi_{ij}^2}$ between all pairs of objects i, j
 - Combine the closest pair to a single object
 - Update the set of distances

 $\Delta R_{ii} > R$

- Repeat until all objects are separated by

only parameter of the algorithm

⇒ hierarchical structure in angles

The fat jet algorithm - Decomposition

- given: Cambridge/Aachen-jet with radius R
- Iterative decomposition procedure to find substructure:

(1) Break the jet j into 2 subjets $j_1, j_2 (m_{j1} > m_{j2})$ (= undo the last stage of clustering)

(2) If there was a significant mass drop $(m_{j1} < \mu m_j)$ and the splitting is not too asymmetric

$$\left(\mathbf{y} = \frac{\min\left(\mathbf{p_{t,j1}^2}, \mathbf{p_{t,j2}^2}\right)}{\mathbf{m_j^2}} \Delta \mathbf{R_{j1,j2}^2} \simeq \frac{\min\left(\mathbf{p_{t,j1}}, \mathbf{p_{t,j2}}\right)}{\max\left(\mathbf{p_{t,j1}}, \mathbf{p_{t,j2}}\right)} > \mathbf{y_{cut}}\right)$$

deem j to be the Higgs neighborhood and exit the loop (3) Otherwise redefine j to be equal to j_1 and go back to (1)

parameters

of the

algorithm

The fat jet algorithm - Filtering

- Because of angular ordering, the QCD radiation will be emitted in the two cones of size R_{bb} around the b-quarks
- Next step: filter the Higgs neighborhood to select the bb pair out of the bbg configuration
 - Rerun the C/A algorithm on the jet constituents, using a finer angular scale $R_{filt} = \min(0.3, R_{b\bar{b}}/2) < R_{b\bar{b}}$
 - Take the 3 hardest objects (sub-jets) that appear
 - $\Rightarrow \text{Captures b jets + } \mathcal{O}(\alpha_{\mathbf{s}}) \text{ radiation \& filters out underlying events } (\sim \mathbf{R_{b\bar{b}}^4}) \& \text{ pile-up}$
 - \Rightarrow Improves mass and angular resolution (and with it b-tagging!)

13

The Analysis with CMS

Setup for the analysis

- Implementation of the "Boosted Higgs Algorithm" with help of Carsten Magass
 [Use of the FastJet Package by M. Cacciari, G. Salam and G. Soyez, http://www.lpthe.jussieu.fr/~salam/fastjet/]
- Mass production of PYTHIA Monte Carlos:
 - Signal (3x 450.000 events, FULLSIM, $m_{\mu} = 115/120/130$ GeV)
 - ZZ, WW, WZ with generator cut: $\mathbf{p_{T,V}} > 100 GeV$ (3 x 500.000 events, FASTSIM)
 - ttbar (10.000.000 events, FASTSIM)
- Mass production of SHERPA Monte Carlos with help of Metin Ata and Markus Merschmeyer:

15

- Z + Jets with generator cut: $p_{T,Z} > 100 GeV$
 - (2 x 1.000.000 events, FASTSIM)
- W + Jets with generator cut: $p_{T,W} > 100 GeV$ (5.000.000 events. FASTSIM)

The cut based analysis

• Cutflow:

The cut based analysis

The cut based analysis (Higgs Selection)

Results

- Systematic uncertainties on the background to consider:
 - Uncertainty on the Jet Energy Scale (3%)
 - \rightarrow move the scale 3% up and 3% down and look how this changes b (have also to regard the consequences on MET)
 - Uncertainty on the used background cross sections (5%)
 - Uncertainty on the b-tagging efficiency (2% per jet)

	m _H = 115 GeV		m _H = 120 GeV		т _н = 130 GeV	
	S/sqrt(B)	Z	S/sqrt(B)	Z	S/sqrt(B)	Z
0 lepton	4.67	3.18	4.03	2.79	2.59	1.65
1 leptons	2.51	1.40	2.18	1.24	1.49	0.81
2 leptons	2.91	2.67	2.28	2.10	1.62	1.59
combined	6.05	4.38	5.12	3.71	3.40	2.43

$$\mathbf{Z}_{\mathbf{i}} = \frac{\mathbf{s}_{\mathbf{i}}}{\sqrt{\mathbf{b}_{\mathbf{i}} + \sigma_{\mathbf{b}_{\mathbf{i}}}^{2}}} \qquad \qquad Z = \sqrt{Z_{0}^{2} + Z_{1}^{2} + Z_{2}^{2}}$$

Summary

- Looking for a light Higgs boson (115-120 GeV):
 - produced together with vector boson
 - boosted regime
 - $H \rightarrow bb$, $V \rightarrow leptons$
- Hopeless case recovered as promising way
- Main instrument: the fat jet algorithm
- Combined significance for a scenario of 100 fb⁻¹ and m_H = 115 GeV: Z = 4.38

Thank You!

BackUp Slides

The Implementation in CMS

