Embedding in 2010 data

m-tautau intermediate meeting 03.12.2010

Thomas Schwindt

Rheinische Friedrich Wilhelms-Universität Bonn

Embedding: Reminder

Important: re-calculate missing ET

$Z \to \mu \mu$ data selection

- Embedding dedicated $Z \to \mu \mu$ skims
 - before: used event list to pick from all data
- Using ~40 pb⁻¹ from good run list
 - pT > 20 GeV in region -2.4 < η < 2.4
 - pT(MS)>10 GeV, | pT(MS)-pT(ID) | / pT(ID) < 0.5
 - Isolation: pT(cone20) < 1.8 GeV
 - Mass requirement: 71 GeV < $M(\mu\mu)$ < 111 GeV
- After all cuts (+ embedding losses): 13k events
 - embedded as lep-lep and as lep-had
 - $pT(I,\tau) > 15 \text{ GeV}$ in region -2.4 < η < 2.4
 - match to truth τ -decays from input muons

$Z \rightarrow \tau \tau$: lep-lep channel

Thomas Schwindt – Uni Bonn

$Z \rightarrow \tau \tau$: lep-lep isolation

- Lepton isolation differs from MC expectation
 - better agreement seen before with low pile-up
 - have to investigate in embedding as well as in data

$Z \rightarrow \tau \tau$: lep-had channel

$Z \rightarrow \tau \tau$: tracks in hadronic taus

- Identification of embedded τ-leptons crucial
 - Calorimeter observables in agreement (not shown)
 - Tracks in taus show discrepancies with increasing pile-up
 - (Good performance in low pile-up shown before)
- First guess: isolation of input muons for embedding

isolation of input muons

- Left out cut on isolation for $Z \to \mu \mu$ selection
 - influence of isolation surprisingly small
 - no real improvement observed in taus
 - results even worse for lepton isolation (not shown)
- Todo: investigate track qualities in pile-up

Mass distributions

Summary & Outlook

- Embedding in general in good shape
 - MET and angular distributions described well
 - Invariant mass peak as expected from MC
- Identification variables to be investigated
 - Too few tracks in hadronic taus (quality?)
 - Some discrepancies in lepton isolation
- Comparison to $Z \rightarrow \tau \tau$ data soon possible
 - check Monte Carlo expectation vs. real data
- Apply embedding for different studies
 - Implement trigger information, study $W \to \tau \nu \ \dots$