The ATLAS Calorimeter

Dresden

4th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

Teresa Barillari, MPP München

1-3 Dec. 2010

- LHC and ATLAS
- ATLAS Calorimeters
- Status and Performance
- Upgrade
- Conclusions

LHC and ATLAS

- The Large Hadron Collider (LHC) at CERN is operating and taking data:
 - In Dec. 2009, pp collision at $\sqrt{s} = 0.9 \text{ TeV} \& 2.36 \text{ TeV}$
 - From March till Nov. 2010, pp collision at $\sqrt{s} = 7 \text{ TeV}$
 - From Nov. till Dec. 2010, Pb Pb collision $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$

ATLAS: A Toroidal LHC ApparatuS

The ATLAS Calorimeter

- With the LHC running at high luminosity the ATLAS calorimeters will play a key role in many physics measurements
- They are required to perform accurate measurements of e, γ, τ, jets, and missing E_T
- To minimize the impact of the pile-up on the physics performance it is required to have "fast" calorimeter response (< 50 ns) and fine granularity
- High radiation resistance for a period of at least 10 years

The ATLAS calorimetry consists of

- LAr Electromagnetic calorimeter (EM)
- LAr Hadronic end-cap calorimeter (HEC)
- LAr Forward calorimeter (FCAL)
- Barrel hadronic calorimeter (TileCal)

LAr Electromagnetic Calorimeters: EM

- ► The LAr EM is a Pb/LAr sampling calorimeter with accordion geometry
- Coverage $|\eta| < 3.2$
- It consists of:
 - 1 LAr EM Barrel (EMB): $|\eta| < 1.475$
 - 2 LAr EM End-Caps (EMECA, EMECC): $1.375 < |\eta| < 3.2$
 - A presampler PS: $|\eta| < 1.8$
 - 173312 readout channels
 - 98.5 % channels operational
 - Design resolution:
 - $\sigma(\mathsf{E})/\mathsf{E} = 10\%/\sqrt{\mathsf{E}(\mathsf{GeV})} \oplus 0.7\%$

LAr HEC and FCAL Calorimeters

- The LAr HEC is a Cu/LAr sampling calorimeter with 4 longitudinal samplings
- ► Coverage: 1.5 < |η| < 3.2</p>
- It consists of:
 - 2 end-caps: HECA, HECC
 - 4 wheels, 4 \times 32 modules
 - 5632 readout channels
 - 99.9% operational
 - $\Delta\eta \times \Delta\phi$ of 0.1×0.1 and 0.2×0.2 for $\eta > 2.5$
 - Cold electronics
 - Design resolution:

 $\sigma(E)/E = 50\%/\sqrt{E(GeV)} \oplus 3\%$

- The LAr FCAL is a Cu/W-LAr sampling calorimeter
- Coverage: $3.1 < |\eta| < 4.9$
 - 3524 readout channels
 - 100% operational
 - Design resolution:

 $\sigma(\mathsf{E})/\mathsf{E} = 100\%/\sqrt{\mathsf{E}(\mathsf{GeV}) \oplus 7\%}$

The Barrel Hadronic Calorimeter

- The <u>Atlas TileCal</u> is a sampling calorimeter using iron/plastic scintillators tiles
- Light transported through wavelength shifting optical fibers to photomultipliers
- Coverage $|\eta| < 1.7$
- It consists of:
 - 2 long barrel partitions: LBA, LBC
 - 2 extended barrel partitions: EBA, EBC
 - Total 4 \times 64 modules in ϕ
 - Granularity $\Delta \eta \times \Delta \phi$ of 0.1×0.1 and 0.2×0.1 in last radial layer
 - Total 5182 cells
 - 97.1% cell operational
 - 256 front-end electronics: Super Drawers (SD)
 - 256 Low Voltage PS
 - Design resolution:

T. Barillari 4th Annual Workshop of the Helmholtz Alliance

Dresden 1-3 Dec. 2010 6

LAr Signal Reconstruction

- FEB: signal amplification and shaping (except HEC) at 40 MHz (shortly stored) and digitized if event passed L1 trigger decision
- ROD: cell energy reconstruction using Optimal Filtering (OF) algorithm

Shaped signal, digitized. Sampled at 40MHz

LAr Calibration Stability

- The stability of the properties of each readout channel (pedestal, gain, noise) essential for the calorimeter
 - Calibration runs are taken every LHC fill
 - Calibration constants are updated every a few weeks
 - Stability of the constants are monitored for long periods
- Pedestal: < 0.03ADC count for all calorimeters
- ► Gains: < 0.1 for all calorimeters
- Robust calibration procedure
- Good electronic stability

arXiv:0912.2642v4 [physics.ins-det]

TileCal Calibration

EM scale calibration:

- Set with a beam of electrons on 11% of the modules and propagated to all the others with the calibration systems
- 3 calibration systems:
 - ¹³⁷Cesium : allow to equalize cell response (precision 0.3%)
 - Laser : Monitor the PMT gain, and the timing of channels
 - Charge injection : ADC counts to pC monitoring, stability in time better than 0.1%
 - Used cosmics in the cavern to validate the EM scale set at test beam
- Each calibration proved stability well below 1%

- Signature of W bosons are vs "escaping" detection
- Missing transverse momentum (E^{miss}), very sensitive to
 - Calorimeter performance: dead and noisy channels, mis-calibration
 - non-collision background
- No tails observed in data after "cleaning" and calibration"
- Resolution as expected from MC

Jet Physics

- Jet cross-section is well described over 5 orders of magnitude.
 - Uncertainty is 30 40%
 - Dominated by Jet Energy Scale (known at 7%, final aim is to achieve 1%)

See: arXiv:1009.5908v2 [hep-ex]

4th Annual Workshop of the Helmholtz Alliance

Dresden 1-3 Dec. 2010 11

Dijet Asymmetry

MAX-PLANCK-GESELLSCHAFT

Event display of a highly asymmetric dijet event in lead ions collisions at LHC. One jet with $E_T > 100 \text{ GeV}$, no evident recoiling jet, no significant missing E_T , and high energy calorimeter cell deposits distributed over a wide azimutal region.

arXiv:1011.6182v1 [hep-ex]

Calorimetry Upgrade for sLHC

Total ionising dose per year calculated by the GCALOR software package

- ► FCal upgrade:
 - For instantaneous luminosities above 10³⁴ cm⁻²s⁻¹: ion build-up, space-charge effects, high voltage drops leading to inefficient charge collection, etc. etc. these are all the causes of the FCal degradation
- LAr (EM+HEC) and TileCal upgrade:
 - Readout electronics, e.g. the cold electronics for the HEC need to be replaced
 - Lol in preparation

T. Barillari

MAX-PLANCK-GESELLSCHAFT

- The ATLAS Calorimeter is acquiring data efficiently
- Its good performance has a key role in many ATLAS physics results already published or in preparation
- This is the result of a long effort of many people

