
The Global Electroweak Fit and Constraints on New Physics with Gfitter

Dörthe Ludwig (DESY, University of Hamburg) for the Gfitter group*

4th Annual Workshop of the Helmholtz Alliance
"Physics at the Terascale" in Dresden
December, 2nd 2010

* M. Baak, M. Goebel, J. Haller, A. Höcker, D. L., K. Mönig, M. Schott, J. Stelzer

Goal: provide state-of-the-art model testing tool for LHC era

Goal: provide state-of-the-art model testing tool for LHC era

1. Input to Gfitter

- electroweak precision measurements from LEP, SLD, TeVatron
- theoretical predictions

Goal: provide state-of-the-art model testing tool for LHC era

1. Input to Gfitter

- electroweak precision measurements from LEP, SLD, **TeVatron**
- theoretical predictions

2. Gfitter

- C++, ROOT, xml
- full statistics analysis (parameter scans, p-values, MC analyses, goodness-of-fit tests)
 - G fitter SM G fitter SM G fitter SM

Goal: provide state-of-the-art model testing tool for LHC era

1. Input to Gfitter

- electroweak precision measurements from LEP, SLD, **TeVatron**
- theoretical predictions

2. Gfitter

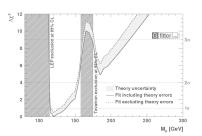
- C++. ROOT. xml
- full statistics analysis (parameter scans, p-values, MC analyses, goodness-of-fit tests)
 - G fitter SM G fitter SM
- G fitter &

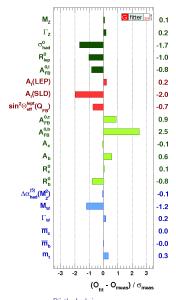
3. Physics Results

- global electroweak fit \Rightarrow constraints on M_H
- determination of α_s

Please refer to main publication. webpage for updated results

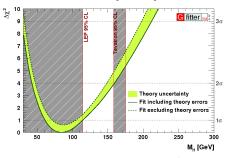
- constraints on M_{H+} and $tan\beta$ in **2HDM**
- observables: K and B sector


constraints on RSM physics using the oblique parameters


 \Rightarrow Topic of this talk

Main publication: EPJ C60, 543-583,2009 [arXiv:0811.0009] http://www.cern.ch/Gfitter

The Electroweak Fit with Gfitter


The Electroweak Fit I: SM Fit Results

- input: usage of latest experimental results of electroweak precision observables
 - incl. direct Higgs searches (LEP, Tevatron)
 - incl. latest average of $m_t = 173.3 \pm 1.1 \text{ GeV}$ (arXiv:1007.3178)
 - incl. latest evaluation of $\Delta \alpha_{had}(M_Z^2)$ (arXiv:1010.4180)
- floating fit parameters: M_Z , M_H , m_t , $\Delta\alpha_{had}^{(5)}(M_Z^2)$, $\alpha_S(M_Z^2)$, \bar{m}_c , \bar{m}_b
- goodness-of-fit:
 - excl. direct Higgs searches: $\chi^2_{min} = 16.6$ $\Rightarrow \text{Prob}(\chi^2_{min}, 13) = 0.22$
 - incl. direct Higgs searches: $\chi^2_{min} = 17.5$ $\Rightarrow \text{Prob}(\chi^2_{min}, 14) = 0.23$
- pull values (incl. direct Higgs searches)
 - $A_{FB}^{0,b}$ largest contributor to χ_{min}^2
 - no individual pull exceeds 3σ
 - small contributions from M_Z , $\Delta \alpha_{had}(M_Z)$, m_c , m_b : input accuracies exceed fit requirements

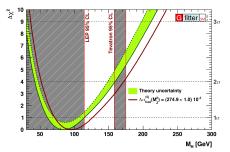
The Electroweak Fit II: Constraints on Higgs mass

- M_H from fit including all data except results from direct Higgs searches at LEP, Tevatron
 - value at minimum $\pm 1\sigma$: $M_H = 84^{+30}_{22} \text{ GeV}$
 - 2σ interval: [42, 159] GeV

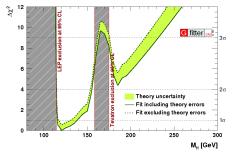
- M_H from fit also including results from direct Higgs searches at LEP, Tevatron
 - value at minimum $\pm 1\sigma$: $M_H=120.6^{+17.0}_{-5.2}~{\rm GeV}$
 - 2σ interval: [114, 155] GeV

⇒ in SM: light Higgs preferred

5 / 12


The Electroweak Fit II: Constraints on Higgs mass

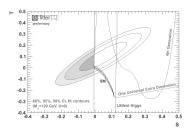
• latest evaluation of $\Delta \alpha_{had}(M_Z^2)$ shifts fit value of M_H to larger values


$$\Delta \alpha_{had}(M_Z^2) = (276.8 \pm 2.2) \cdot 10^{-4}$$

 $\Rightarrow \Delta \alpha_{had}(M_Z^2) = (274.2 \pm 1.0) \cdot 10^{-4}$

(K. Hagiwara et al., Phys. Lett. B 649: 173-179, 2007) (M. Davier et al., arXiv:1010.4180)

- increase of M_H (by 12 GeV) due to negative correlation in the fit
 - value at minimum $\pm 1\sigma$: $M_H = 96^{+31}_{-24} \text{ GeV}$
 - 2σ interval: [52, 172] GeV



- shift smaller due to inclusion of direct Higgs searches
 - value at minimum $\pm 1\sigma$: $M_H=120.2^{+18.1}_{-4.7}~{\rm GeV}$
 - 2σ interval: [114, 155] GeV

⇒ in SM: light Higgs preferred

Constraints on New Physics Models

BSM Constraints using the oblique parameters I

[Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 assumption: high-scale BSM physics appears only through vacuum polarisation corrections (cf. rad. corr. from m_t, M_H in SM)

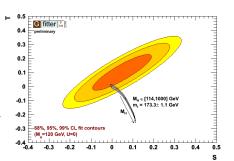
$$(x,z)$$
 (x,z) $(x,z$

2. ew fit sensitive to BSM physics through these **oblique corrections**

 oblique corrections from New Physics described through STU parametrization

$$O = O_{SM,ref}(M_H,m_t) + c_S S + c_T T + c_U U$$

- STU measure deviations from electroweak radiative correction expected in SM_{ref}
- S: new physics contribution to neutral current processes
- U: (+S) new physics contribution to charged current processes
 - U only sensitive to M_W and Γ_W
 - usually very small in new physics models (often: U=0)
- T: difference between neutral and charged current processes (sensitive to weak isospin violation)


BSM Constraints using the oblique parameters II

- S, T, U derived from fit to electroweak observables
 - ${
 m SM}_{ref}$ chosen at ${
 m m}_t=173.1\,{
 m GeV},$ ${
 m M}_H=120\,{
 m GeV}$
- results for STU and correlation matrix:

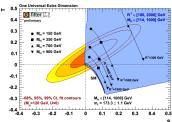
• grey area: SM prediction

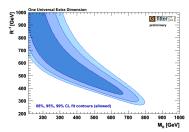
- for
$$SM_{ref}$$
: $S = T = U = 0$


- S, T: logarithmically dependent on M_H
- comparison of data and SM prediction:
 - small M_H compatible with data
 - no need for new physics

BSM Constraints using the oblique parameters II

- S, T, U derived from fit to electroweak observables
 - SM_{ref} chosen at $m_t = 173.1 \, GeV$, $M_H = 120 \, GeV$
- results for STU and correlation matrix:

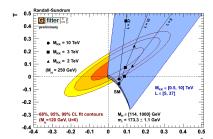

- grey area: SM prediction
 - for SM_{ref} : S = T = U = 0
- S, T: logarithmically dependent on M_H
- comparison of data and SM prediction:
 - small M_H compatible with data
 - no need for new physics

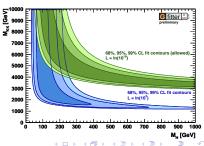

- other models also compatible with the data
 - UED, 4th fermion generation, Littlest Higgs, ...
 - variation of the free parameters allows for large area in ST-plane
 - for some parameter values: large M_H allowed (compensation of effects)

One Universal Extra Dimension

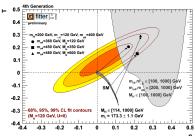
[Appelquist et al., Phys. Rev. D67 055002 (2003)] [Gogoladze et al., Phys. Rev. D74 093012 (2006)]

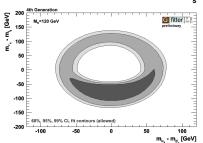
- all SM particles can propagate into ED
- compactification
 - ⇒ Kaluza-Klein (KK) modes
- conservation of Kaluza-Klein parity
 - similar phenomenology as SUSY
 - lightest KK state stable: CDM
- free parameters of UED model
 - d_{ED}: number of ED (fixed to one)
 - R⁻¹: compactification scale (1/size of extra dimension, $m_{KK} \sim n/R$)


- contribution to vac. polarisation (STU):
 - from KK-top/bottom, KK-Higgs loops
 - dependent on R^{-1} , M_H , m_t
- results:
 - large R⁻¹: UED approaches SM (exp.), only small M_H allowed
 - small R⁻¹: UED contribution compensated by large M_H
 - excl.: $R^{-1} \le 300 \text{ GeV}$, $M_H > 800 \text{ GeV}$


Warped Extra Dimensions

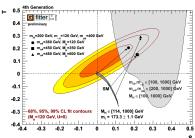
[L.Randall, R.Sundrum, Phys. Rev. Lett. 83, 3370 (1999)], [S. Casagrande et al., JHEP10(2008)094]

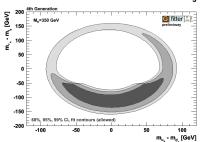

- introducing one extra dimension (ED) for solving the hierarchy problem
- RS model characterized by one warped ED confined by two three-branes
- one brane contains SM particles
- extension: SM particles allowed to propagate in bulk region
- each SM fermion accompanied by two towers of heavy KK modes
- free parameters
 - M_{KK}: KK scale
 - L: inverse warp factor, function of compactification radius, explaining big observed hierarchy


- large L requires large M_{KK}
- compensation if M_H is large Dörthe Ludwig

[Hubisz et al., JHEP 0601:135 (2006)]

models with a fourth generation


- SM: no explanation for n=3 generations
- introduction of new states for leptons and quarks $(\Psi_L = (\Psi_1, \Psi_2)_L, \Psi_{1,R}, \Psi_{1,R})$

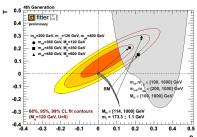

• free parameters:

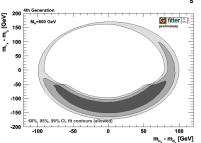
- masses of new quarks and leptons m_{μ_A} , m_{d_A} , m_{e_A} m_{ν_A}
- assuming: no mixing of extra fermions
- model-independent
- contribution to STU from new fermions.
- sensitivity to mass difference between up-type and down-type fields, rather than absolute mass scale

- with appropriate mass differences: 4th fermion model consistent with data
- large M_H is allowed
- data prefer a heavier charged lepton

[Hubisz et al., JHEP 0601:135 (2006)]

models with a fourth generation


- SM: no explanation for n=3 generations
- introduction of new states for leptons and quarks $(\Psi_L = (\Psi_1, \Psi_2)_L, \Psi_{1,R}, \Psi_{1,R})$


• free parameters:

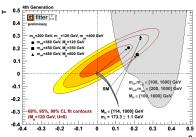
- masses of new quarks and leptons $m_{U_A}, m_{d_A}, m_{e_A}, m_{\nu_A}$
- assuming: no mixing of extra fermions
- model-independent
- contribution to STU from new fermions
- sensitivity to mass difference between up-type and down-type fields, rather than absolute mass scale

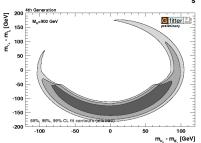
- with appropriate mass differences: 4th fermion model consistent with data
- large M_H is allowed
- data prefer a heavier charged lepton

[Hubisz et al., JHEP 0601:135 (2006)]

models with a fourth generation

- SM: no explanation for n=3 generations
- introduction of new states for leptons and quarks $(\Psi_L = (\Psi_1, \Psi_2)_L, \Psi_{1,R}, \Psi_{1,R})$


· free parameters:


- masses of new quarks and leptons m_{u_A} , m_{d_A} , m_{e_A} m_{ν_A}
- assuming: no mixing of extra fermions
- model-independent
- contribution to STU from new fermions
- sensitivity to mass difference between up-type and down-type fields, rather than absolute mass scale

- with appropriate mass differences: 4th fermion model consistent with data
- large M_H is allowed
- data prefer a heavier charged lepton

[Hubisz et al., JHEP 0601:135 (2006)]

models with a fourth generation

- SM: no explanation for n=3 generations
- introduction of new states for leptons and quarks $(\Psi_L = (\Psi_1, \Psi_2)_L, \Psi_{1,R}, \Psi_{1,R})$

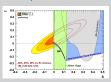
• free parameters:

- masses of new quarks and leptons m_{u_A} , m_{d_A} , m_{e_A} m_{ν_A}
- assuming: no mixing of extra fermions
- model-independent
- contribution to STU from new fermions
- sensitivity to mass difference between up-type and down-type fields, rather than absolute mass scale

- with appropriate mass differences: 4th
 fermion model consistent with data
- large M_H is allowed
- data prefer a heavier charged lepton

Conclusions

Standard model


- global fit of the electroweak SM
- inclusion of latest $\Delta \alpha_{had} (M_Z^2)$ evaluation (M. Davier et al., arXiv:1010.4180)

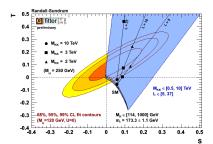
- no evidences for physics beyond SM
- inclusion of direct Higgs searches
 - \Rightarrow Higgs mass strongly constrained
 - \Rightarrow light Higgs preferred by SM

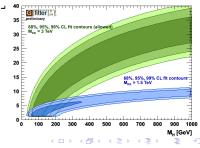
New physics

 test compatibility of BSM models with electroweak precision data via the oblique parameters (universal/ warped extra dimensions, 4th generation, ...)

- set constraints on BSM model parameters
- heavier Higgs boson allowed in various BSM models

http://www.cern.ch/Gfitter

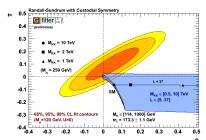

Backup Slides

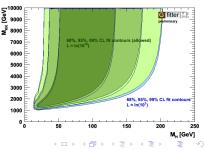

Warped Extra Dimensions

[L.Randall, R.Sundrum, Phys. Rev. Lett. 83, 3370 (1999)], [S. Casagrande et al JHEP10(2008)094]

- introducing one extra dimension (ED) for solving the hierarchy problem
- RS model characterized by one warped ED confined by two three-branes
- one brane contains SM particles
- extension: SM particles allowed to propagate in bulk region
- each SM fermion accompanied by two towers of heavy KK modes
- free parameters
 - M_{KK}: KK scale
 - L: inverse warp factor, function of compactification radius, explaining big observed hierarchy

- large L requires large M_{KK}
- compensation if M_H is large

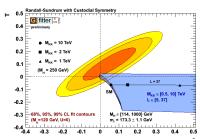


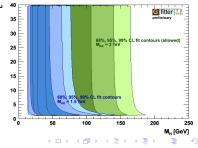


Warped Extra Dimensions with custodial symmetry

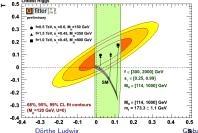
[K.Agashe, A.Delgado, M.May, R.Sundrum, JHEP0308, 050 (2003)], [S. Casagrande et al., JHEP10(2008)094]

- goal: avoid large T values
- introducing so-called custodial isospin gauge symmetry in the bulk
- extension of the hypercharge group to $SU(2)_R \times U(1)_X$
- bulk symmetry group: $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ broken to $SU(3)_C \times SU(2)_L \times U(1)_Y$ on UV brane
- IR brane $SU(2)_R$ symmetric
- right handed fermionic fields occur in doublets
- results:
 - almost completely ruled out
 - only small M_H allowed

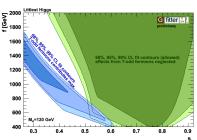




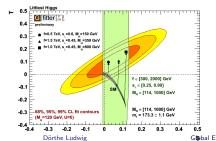
Warped Extra Dimensions with custodial symmetry


[K.Agashe, A.Delgado, M.May, R.Sundrum, JHEP0308, 050 (2003)],[S. Casagrande et al., JHEP10(2008)094]

- goal: avoid large T values
- introducing so-called custodial isospin gauge symmetry in the bulk
- extension of the hypercharge group to $SU(2)_R \times U(1)_X$
- bulk symmetry group: $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ broken to $SU(3)_C \times SU(2)_L \times U(1)_Y$ on UV brane
- IR brane $SU(2)_R$ symmetric
- right handed fermionic fields occur in doublets
- results:
 - almost completely ruled out
 - only small M_H allowed

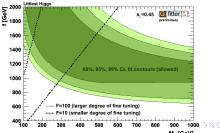


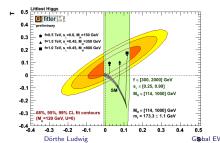
- Higgs pseudo-Nambu-Goldstone boson
- new fermions and new gauge bosons
 - two new top states (T-odd m_{T^-} , T-even m_{T^+})
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables



- parameters of LH model
 - f: symmetry breaking scale
 - $s_{\lambda} \cong m_{T-}/m_{T+}$

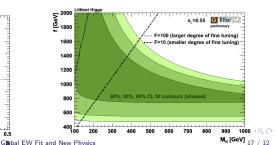
- large M_H can be allowed
- dependent on s_{λ} :
 - large f: LH approaches the SM prediction and SM MH constraints
 - smaller f: M_H can be large
- no absolute exclusion limits due to
 sy dependence

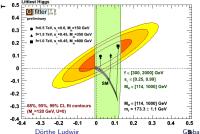

- Higgs pseudo-Nambu-Goldstone boson
- new fermions and new gauge bosons
 - two new top states (T-odd m_{T^-} , T-even m_{T^+})
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables


· parameters of LH model

- f: symmetry breaking scale
- $s_{\lambda} \cong m_{T-}/m_{T+}$

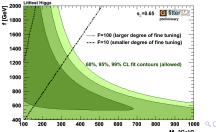
- large M_H can be allowed
- dependent on s_{λ} :
 - large f: LH approaches the SM prediction and SM MH constraints
 - smaller f: M_H can be large
- no absolute exclusion limits due to
 sy dependence

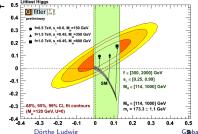

- Higgs pseudo-Nambu-Goldstone boson
- new fermions and new gauge bosons
 - two new top states (T-odd m_{T^-} , T-even m_{T^+})
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables


parameters of LH model

- f: symmetry breaking scale
- $s_{\lambda} \cong m_{\mathcal{T}^{-}}/m_{\mathcal{T}^{+}}$

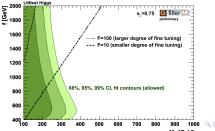
- large M_H can be allowed
- dependent on s_{λ} :
 - large f: LH approaches the SM prediction and SM MH constraints
 - smaller f: M_H can be large
- no absolute exclusion limits due to sλ dependence


- Higgs pseudo-Nambu-Goldstone boson
- new fermions and new gauge bosons
 - two new top states (T-odd m_{T^-} , T-even m_{T^+})
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables

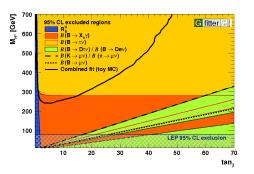

parameters of LH model

- f: symmetry breaking scale
- $s_{\lambda} \cong m_{T-}/m_{T+}$

- large M_H can be allowed
- dependent on s_{λ} :
 - large f: LH approaches the SM prediction and SM MH constraints
 - smaller f: M_H can be large
- no absolute exclusion limits due to sy dependence


- Higgs pseudo-Nambu-Goldstone boson
- new fermions and new gauge bosons
 - two new top states (T-odd m_{T^-} , T-even m_{T^+})
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables

· parameters of LH model


- f: symmetry breaking scale
- $s_{\lambda} \cong m_{T-}/m_{T+}$

- large M_H can be allowed
- dependent on s_{λ} :
 - large f: LH approaches the SM prediction and SM MH constraints
 - smaller f: M_H can be large
- no absolute exclusion limits due to sy dependence

2 Higgs Doublet Model

- Type-II
- additional Higgs doublet
- one doublet couples to up-type, one doublet couples to down-type fermions

- 6 free parameters \Rightarrow $M_{H^{\pm}}$, M_{A^0} , M_{H^0} , M_h , $\tan \beta$, $|\alpha|$
- looked at processes sensitive to charged Higgs ⇒ M_{H±}, tanβ
- overlay of individual 95% CL excluded regions
 - assuming ndof=1 and 2-sided limits
- · combined fit:
 - ndof ambiguity resolved by MC toy study assuming 2-sided limits
- excluded at 95% CL:
 - small $tan \beta$
 - for all $tan \beta$: $M_H < 240 \text{ GeV}$

4日 > 4周 > 4 至 > 4 至 >

- for tan β =70: M_H < 780 GeV