Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch in collaboration with W. Bernreuther and P. Gonzalez [arXiv:1003.5585]

Dresden, December 2010

Introduction

- Higgs decays into electroweak gauge bosons yield very clean signals.
- For a sufficiently heavy (SM) Higgs the decay into WW and ZZ are the dominant decay modes.
- The *CP* eigenvalue of the Higgs can (in principle) be determined in these decay modes by measuring certain angular distributions.

Production of

Vartin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Pseudoscalar Higgs Bosons

- Most non-standard Higgs sectors also contain pseudoscalar particles.
- There are no tree-level couplings between a pseudoscalar Higgs and two gauge bosons.
- The bosonic sectors of most SM extensions conserve parity and cannot induce AVV' couplings at any order.
 - \Rightarrow AVV' couplings must be induced trough fermion loops.
 - \Rightarrow The branching ratios are usually expected to be small.

If we "see" a neutral spin-zero particle decaying to VV', does that mean it is scalar?

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Production and Decays

- At the LHC the dominant production mode is gluon fusion.
- We compute $\sigma(pp \to \phi \to VV')$ (with $\phi = H, A$ and $VV' = WW, ZZ, Z\gamma, \gamma\gamma$) in the narrow width approximation

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Conclusions

 \Rightarrow Strong couplings of ϕ to coloured particles enhances production cross section and branching ratio.

How large can the cross sections $\sigma(pp\to\phi\to VV')$ get in different SM extensions?

Adaptive Parameter Scans

How do we find, in a given model, the regions of the experimentally allowed parameter space, where a certain observable *O* is large?

Let $\mathbf{x} = (x_1, \dots, x_n)$ be the unknown model parameters and

 $\theta_{\exp}(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} \text{ is experimentally allowed} \\ 0, & \mathbf{x} \text{ is experimentally forbidden} \end{cases}.$

Then use the VEGAS algorithm to compute the integral

$$\int d^n \mathbf{x} \, O(\mathbf{x}) \theta_{\mathsf{exp}}(\mathbf{x})$$

The algorithm will sample the desired parameter space regions with a higher density.

[O. Brein, hep-ph/0407340]

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

The Two Higgs Doublet Model

We consider a type-II two Higgs doublet model with no Higgs sector CP violation.

Theoretical constraints:

[2HDMC, Eriksson, Rathsman, Stål]

- Positivity of the Higgs potential
- Perturbativity (Yukawa couplings $< 4\pi$)
- $\bullet\,$ Tree-level unitarity of the S matrix

Experimental constraints (95% C.L.):

- Direct Higgs searches at LEP2 and Tevatron [HiggsBounds]
- Electroweak precision data (S and T parameters, R_b)
- b physics ($m_{H^{\pm}} > 350 \,\text{GeV}$) [Kaffas, Osland, Ogreid, arXiv:0706.2997]

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Scan Results

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Maximal Signal Cross Sections

$$\begin{aligned} \sigma(pp \to A \to WW) &\lesssim 0.7 \, \mathrm{pb} \quad , \quad \sigma(pp \to A \to ZZ) \lesssim 0.03 \, \mathrm{pb} \\ \sigma(pp \to A \to \gamma\gamma) &\lesssim 0.2 \, \mathrm{pb} \quad , \quad \sigma(pp \to A \to Z\gamma) \lesssim 0.04 \, \mathrm{pb} \end{aligned}$$

Maximal cross sections are reached simultaneously for

$$\tan \beta \approx 0.75 \quad , \quad m_A = 320 \,\text{GeV} \quad , \quad m_{H^{\pm}} > 370 \,\text{GeV}$$
$$\beta - \alpha \approx \frac{\pi}{2} \quad \text{or} \quad m_h > m_A - m_Z \quad ,$$

- small $\tan\beta$ enhances production and decays mediated by top-loop
- $A \rightarrow b\bar{b}$ is suppressed by small $\tan \beta$
- $A \rightarrow t\bar{t}$ is not allowed kinematically
- $A \rightarrow Zh$ can be suppressed parametrically or kinematically

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

,

,

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

A fourth Generation of Fermions

- We consider a fourth generation of heavy chiral fermions $(u_4, d_4, \nu_4, \ell_4)$ with Dirac neutrinos.
- We neglect CKM mixing with the first three generations.
- Mass bounds from direct searches at LEP and TEVATRON:

 $m_{u_4} > 311 \,\text{GeV} , \ m_{d_4} > 338 \,\text{GeV} , \ m_{\nu_4} > 100 \,\text{GeV} , \ m_{\ell_4} > 100 \,\text{GeV} .$

- The strongest constraints come from the oblique electroweak parameters S and T. [Kribs, Plehn et al. arXiv:0706.3718]
 - Large mass splittings within an SU(2) doublet lead to a large ΔT .
 - Small mass splittings within an SU(2) doublet lead to a large $\Delta S.$

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Scan Results

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Maximal Signal Cross Sections

 $\begin{aligned} \sigma(pp \to A \to WW) \lesssim 3.2 \, \mathrm{pb} &, \quad \sigma(pp \to A \to ZZ) \lesssim 0.40 \, \mathrm{pb} \\ \sigma(pp \to A \to \gamma\gamma) \lesssim 3.0 \, \mathrm{pb} &, \quad \sigma(pp \to A \to Z\gamma) \lesssim 0.26 \, \mathrm{pb} \end{aligned}$

Maximal cross sections are reached simultaneously for

$$\tan \beta \approx 6.3 \quad , \quad m_A \approx 260 \,\text{GeV} \quad , \quad m_{H\pm} \approx 360 \,\text{GeV} \quad , \\ 0 < \alpha \ll 1 \quad , \quad m_{\nu_4} \approx 100 \,\text{GeV} \quad , \quad m_{\ell_4} \approx m_A/2 \quad .$$

- The ℓ_4 -loop contributions are maximised by putting m_A at the $\ell_4^+ \ell_4^-$ threshold.
- At large $\tan \beta$ the $gg \rightarrow A$ production rates receive a large contribution from the d_4 -loop.
- $\sigma(gg \rightarrow A) = 840 \,\mathrm{pb}$ for the parameters above.

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

$\tan\beta$ Dependence

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

p. 12

Light Higgs Production

The scalar Higgs couplings are

$$\begin{split} g^{\rm THDM}_{hb\bar{b}} &= -\frac{\sin\alpha}{\cos\beta} g^{\rm SM}_{Hb\bar{b}} \quad , \qquad g^{\rm THDM}_{ht\bar{t}} = +\frac{\cos\alpha}{\sin\beta} g^{\rm SM}_{Ht\bar{t}} \quad , \\ g^{\rm THDM}_{Hb\bar{b}} &= +\frac{\sin\alpha}{\sin\beta} g^{\rm SM}_{Hb\bar{b}} \quad , \qquad g^{\rm THDM}_{Ht\bar{t}} = +\frac{\cos\alpha}{\cos\beta} g^{\rm SM}_{Ht\bar{t}} \quad . \end{split}$$

- $\alpha \ll 1$ leads to $\mathcal{O}(1)$ couplings for $hq\bar{q}$.
- $\alpha > 0$ leads to cancelleations between the u_4 and d_4 loop in $gg \rightarrow h$.
- \Rightarrow The $gg \rightarrow h$ production rate can still be similar to the SM.

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Oblique Electroweak Parameters

0.395% CL 68% CL 0.2best fit 0.1T0 SM, $m_H = 117 \,\mathrm{GeV}$ -0.1-0.2 ∟ -0.2 -0.10.10.20.30 S

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Oblique Electroweak Parameters

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Oblique Electroweak Parameters

0.395% CL - 68% CL 0.22HDM 0.1T0 4th Gen. -0.1-0.2-0.2-0.10 0.10.20.3S

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Extended Technicolour Models

- Electroweak symmetry is broken by a condensate of techniquarks T.
- To obtain the right W and Z masses $v_T \equiv \langle T\bar{T} \rangle = 246 \,\text{GeV}.$
- SM fermion masses are generated by the breakdown of an extended technicolour gauge group.
- The top mass ends up too small.

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Topcolour Models

- The third generation feels a "stronger" strong interaction.
- Electroweak symmetry is broken by a $t\bar{t}$ codensate.
- To obtain the right W and Z masses $f_{\pi} = \langle t\bar{t} \rangle = 246 \,\text{GeV}.$
- f_{π} and the top mass m_t are related by the Pagels-Stokar formula

$$f_{\pi} = \frac{N_c}{16\pi^2} m_t^2 (\ln \frac{M^2}{m_t^2} + k)$$

• Without fine tuning m_t is too large (~ 600 GeV).

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Topcolour Assisted Technicolour (TC2)

- We have both (extended) technicolour and topcolour interactions.
- The spin-zero bound states form two $SU(2)_L$ doublets with VEVs f_{π} and v_T .
- To obtain the right W and Z masses $f_{\pi}^2 + v_T^2 = v^2 = (246 \text{ GeV})^2$.
- The physical spin-zero particle content is
 - a top-pion triplet Π^{\pm} , Π^0 ($m_{\Pi} = \mathcal{O}(100 \,\text{GeV})$)
 - a scalar top-Higgs H_t ($m_{H_t} \approx 2m_t$)
 - a scalar techni-Higgs H_{TC} ($m_{H_{TC}} = \mathcal{O}(1 \text{ TeV})$)
- The top mass gets only a small contribution from the ETC sector.

$$m_t = \frac{Y_t f_\pi + \varepsilon_t v_T}{\sqrt{2}} \quad , \quad \varepsilon_t \lesssim 0.1$$

.

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour

Cross Sections

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Conclusions

- We have scanned the allowed parameter spaces of different SM extensions and determined the maximal size of the $pp \rightarrow A, H \rightarrow WW, ZZ, Z\gamma, \gamma\gamma$ cross sections.
- In a 3-generation (4-generation) 2HDM the largest possible $A \rightarrow VV'$ cross sections are found for $\tan \beta \approx 0.75$ ($\tan \beta \approx 6$).
- All studied models permit $pp \to A \to WW$ and $pp \to A \to \gamma\gamma$ cross sections of observable size.
- In these scenarios the A production cross sections are of $\mathcal{O}(100\,\mathrm{pb}).$

 \Rightarrow Discovery will most likely happen in $A \rightarrow \tau^+ \tau^-$ or $A \rightarrow b \bar{b}.$

Production of Pseudoscalar Higgs Bosons at the LHC and Decays into Electroweak Gauge Bosons

Martin Wiebusch

Introduction

Two Higgs Doublet Model

A fourth Generation of Fermions

Topcolour Assisted Technicolour