Search for Large Extra Dimensions (LED) in the di-muon final state with CMS

Metin Ata

- Thomas Hebbeker
- Arnd Meyer
- Stefan A. Schmitz

4th Annual Workshop of the Helmholtz Alliance, Dresden "Physics at the Terascale", December 2010

Bundesministerium für Bildung und Forschung

GEEÖRDERT VON

III. Physikalisches Institut A, RWTH Aachen

Outline

- Introduction
- **Output** Event Selection
- Monte Carlo Generation
- MC-Data comparison
- 6 Limits Setting
- 6 Long-term prospects

Motivation

Why extra dimensions?

 Huge hierarchy between VEV of Higgs (*M_{EW}*) and characteristic energy scale of gravity (*M_{Planck}*) given by :

- Closely related is the fine-tuning problem of the Higgs mass (e.g. contributions by lepton loops)
- Such hierarchies tend to collaps and are considered unnatural

Possible Solutions?

- In SUSY divergent loop corrections cancel due to super partners
- Large Extra Dimensions (LED) Assume a higher dimensional works

Motivation

Why extra dimensions?

 Huge hierarchy between VEV of Higgs (*M_{EW}*) and characteristic energy scale of gravity (*M_{Planck}*) given by :

- Closely related is the fine-tuning problem of the Higgs mass (e.g. contributions by lepton loops)
- Such hierarchies tend to collaps and are considered unnatural

Possible Solutions?

- In SUSY divergent loop corrections cancel due to super partners
- Large Extra Dimensions (LED) Assume a higher dimensional works

Motivation

Why extra dimensions?

 Huge hierarchy between VEV of Higgs (*M_{EW}*) and characteristic energy scale of gravity (*M_{Planck}*) given by :

- Closely related is the fine-tuning problem of the Higgs mass (e.g. contributions by lepton loops)
- Such hierarchies tend to collaps and are considered unnatural

Possible Solutions?

- In SUSY divergent loop corrections cancel due to super partners
- Large Extra Dimensions (LED) Assume a higher dimensional world

What are LED about?

- SM trapped on Brane, gravity escapes into extra dimensions (Bulk)
- Extra dimensions are compactified possibly at the mm-scale

• Boundary conditions lead to effective Planck scale: $M_S^{2+\eta_{\rm ED}} \approx \frac{M_{\rm Planck}^2}{R^{\eta_{\rm ED}}}$ • Effective Lagrangian given by:

Theory of LED can be tested at LHC at high energies

What are LED about?

- SM trapped on Brane, gravity escapes into extra dimensions (Bulk)
- Extra dimensions are compactified possibly at the mm-scale

- Boundary conditions lead to effective Planck scale:
 - $M_S^{2+n_{
 m ED}} \approx \frac{M_{Planck}^2}{R^{n_{
 m ED}}}$

Theory of LED can be tested at LHC at high energies

What are LED about?

- SM trapped on Brane, gravity escapes into extra dimensions (Bulk)
- Extra dimensions are compactified possibly at the mm-scale

• Boundary conditions lead to effective Planck scale: $M_{S}^{2+n_{\rm ED}} \approx \frac{M_{Planck}^{2}}{R^{n_{\rm ED}}}$ • Effective Lagrangian given by: $\mathcal{L}_{grav} = -\frac{1}{M_{Planck}} \sum_{\alpha} G_{\mu\nu}^{\alpha} T^{\mu\nu}$

Theory of LED can be tested at LHC at high energies

What are LED about?

- SM trapped on Brane, gravity escapes into extra dimensions (Bulk)
- Extra dimensions are compactified possibly at the mm-scale

• Boundary conditions lead to effective Planck scale: $M_{S}^{2+n_{\rm ED}} \approx \frac{M_{Planck}^{2}}{R^{n_{\rm ED}}}$ • Effective Lagrangian given by: $\mathcal{L}_{grav} = -\frac{1}{M_{Planck}} \sum_{\alpha} G_{\mu\nu}^{\alpha} T^{\mu\nu}$

• Theory of LED can be tested at LHC at high energies

Theory II

How to search for LED?

- Theory of LED can be tested at LHC at high energies
- Direct graviton production at LHC via single photon/jet signatures

• This talk is about virtual graviton coupling to fermion pairs

Metin Ata, CMS TS-2010/021

Phys. Inst. III A

 Expect additional di-muon pairs at high invariant masses compared to SM

Metin Ata (RWTH Aachen)

Theory II

How to search for LED?

- Theory of LED can be tested at LHC at high energies
- Direct graviton production at LHC via single photon/jet signatures

• This talk is about virtual graviton coupling to fermion pairs

 Expect additional di-muon pairs at high invariant masses compared to SM

Theory II

How to search for LED?

- Theory of LED can be tested at LHC at high energies
- Direct graviton production at LHC via single photon/jet signatures

 Expect additional di-muon pairs at high invariant masses compared to SM

Muon Selection

Analysis based on Exotica Muon cut recommendations :

- Single muon trigger required • $|\eta| \le 2.1$ (muon trigger)
- $p_t > 30$ GeV
- Tight Muon ID:
 - Criterion on goodness of track fit
 - Reconstructed in Muon System and Tracker
 - Matching track in Tracker and Muon System
- Isolation requirements for the track in the Silicon Tracker

Also need to refit p_t , η , ϕ for high energy muons

Metin Ata (RWTH Aachen)

Transverse distance of the track fit to interaction point < 0.2 cm Number of hits that have been used for the track fit

- In the Silicon Tracker > 10
- In the Muon System > 0

Event Selection

Muon Selection

Analysis based on Exotica Muon cut recommendations :

- Single muon trigger required
- $|\eta| \leq 2.1$ (muon trigger)
- $p_t > 30$ GeV
- Tight Muon ID:
 - Criterion on goodness of track fit
 - Reconstructed in Muon System and Tracker
 - Matching track in Tracker and Muon System
- Isolation requirements for the track in the Silicon Tracker

Also need to refit p_t , η , ϕ for high energy muons

Metin Ata (RWTH Aachen)

Iransverse distance of the track fit to interaction point < 0.2 cm
 Number of hits that have been used for the track fit
 In the Pixel detector > 0
 In the Silicon Tracker > 10

In the Muon System > 0

Event Selection

Muon Selection

Analysis based on Exotica Muon cut recommendations :

- Single muon trigger required
- $|\eta| \leq 2.1$ (muon trigger)
- *p_t* > 30 GeV
- Tight Muon ID:
 - Criterion on goodness of track fit
 - Reconstructed in Muon System and Tracker
 - Matching track in Tracker and Muon System
- Isolation requirements for the track in the Silicon Tracker

Also need to refit p_t , η , ϕ for high energy muons

- Transverse distance of the track fit to interaction point < 0.2 cm
- Number of hits that have been used for the track fit
 - In the Pixel detector > 0
 - In the Silicon Tracker > 10
 - In the Muon System > 0

Monte Carlo Generation

Signal Monte Carlos

- Currently using Pythia 8 package documented in arXiv:0912.4233v2
 Using GRW convention, only depending on reduced Planck scale
 M_S, not on number of extra dimensions, hep-ph/9811291
 - Producing high invariant di-muon masses where signal becomes dominant \sqrt{s} > 300 GeV
 - Different values of M_S from 1200 GeV to 1800 GeV (DØ limits at $M_S \approx 1600$ GeV (GRW))

Be aware

Theory demands a cut-off scale to avoid divergences. Presently the cut-off scale set to COM energy but naivly at M_S in theory.

Monte Carlo Generation

Signal Monte Carlos

- Currently using Pythia 8 package documented in arXiv:0912.4233v2
- Using GRW convention, only depending on reduced Planck scale M_S , not on number of extra dimensions, hep-ph/9811291
- Producing high invariant di-muon masses where signal becomes dominant $\sqrt{\hat{s}} > 300 \text{ GeV}$
- Different values of M_S from 1200 GeV to 1800 GeV (DØ limits at $M_S \approx 1600$ GeV (GRW))

Be aware

Theory demands a cut-off scale to avoid divergences. Presently the cut-off scale set to COM energy but naivly at M_S in theory.

Monte Carlo Generation

Signal Monte Carlos

- Currently using Pythia 8 package documented in arXiv:0912.4233v2
- Using GRW convention, only depending on reduced Planck scale M_S , not on number of extra dimensions, hep-ph/9811291
- Producing high invariant di-muon masses where signal becomes dominant $\sqrt{\hat{s}} > 300 \text{ GeV}$
- Different values of M_S from 1200 GeV to 1800 GeV (DØ limits at $M_S \approx 1600$ GeV (GRW))

Be aware

Theory demands a cut-off scale to avoid divergences. Presently the cut-off scale set to COM energy but naivly at M_S in theory.

Z to Muon pairs

 Very nice agreemen between data and MC at the Z peak
 Excellent muon momentum resolution of the CMS detector

Z to Muon pairs

Very nice agreement
 between data and
 MC at the Z peak
 Excellent muon

momentum resolution of the CMS detector

Z to Muon pairs

- Very nice agreement
 between data and
 MC at the Z peak
- Excellent muon momentum resolution of the CMS detector

Interesting Event Displays

Metin Ata (RWTH Aachen)

Bayesian Limit Calculations

Statistical model:

Calculate posterior probability by:

$$\Pi_{\text{posterior}}(\sigma_{\mu\mu}|N_{\text{obs}}) = \int dL \ d\epsilon \ db \frac{(\sigma_{\mu\mu} \cdot L \cdot \epsilon + b)^{N_{\text{obs}}}}{N_{\text{obs}}} \cdot e^{-(\sigma_{\mu\mu} \cdot L \cdot \epsilon + b)} \cdot \pi(b) \cdot \pi(L) \cdot \pi(\epsilon) \cdot \pi_{\rho}(\sigma)$$

- Currently calculated with a flat prior for the signal uncertainty E.g. Gaussian prior for background uncertainties
- $\circ\,$ Cross section and muon efficiency systematic uncertainty $\sim\,15\%$
- Luminosity uncertainty reduced by normalizing to Z peak;
- Limits calculated with RooStats: PhysicsTools/RooStatsCms/macros/examples/roostats_cl95_bc.C

Phys. Inst. III A

Bayesian Limit Calculations

Statistical model:

Calculate posterior probability by:

$$\Pi_{\text{posterior}}(\sigma_{\mu\mu}|N_{\text{obs}}) = \int dL \ d\epsilon \ db \frac{(\sigma_{\mu\mu} \cdot L \cdot \epsilon + b)^{N_{\text{obs}}}}{N_{\text{obs}}} \cdot e^{-(\sigma_{\mu\mu} \cdot L \cdot \epsilon + b)} \cdot \pi(b) \cdot \pi(L) \cdot \pi(\epsilon) \cdot \pi_{\rho}(\sigma)$$

- Currently calculated with a flat prior for the signal uncertainty E.g. Gaussian prior for background uncertainties
- ullet Cross section and muon efficiency systematic uncertainty $\sim 15\%$
- Luminosity uncertainty reduced by normalizing to Z peak
- Limits calculated with RooStats: PhysicsTools/RooStatsCms/macros/examples/roostats_cl95_bc.C

Phys. Inst. III A

Bayesian Limit Calculations

Statistical model:

Calculate posterior probability by:

$$\Pi_{\text{posterior}}(\sigma_{\mu\mu}|N_{\text{obs}}) = \int dL \ d\epsilon \ db \frac{(\sigma_{\mu\mu} \cdot L \cdot \epsilon + b)^{N_{\text{obs}}}}{N_{\text{obs}}} \cdot e^{-(\sigma_{\mu\mu} \cdot L \cdot \epsilon + b)} \cdot \pi(b) \cdot \pi(L) \cdot \pi(\epsilon) \cdot \pi_{p}(\sigma)$$

- Currently calculated with a flat prior for the signal uncertainty E.g. Gaussian prior for background uncertainties
- ullet Cross section and muon efficiency systematic uncertainty $\sim 15\%$
- Luminosity uncertainty reduced by normalizing to Z peak
- Limits calculated with RooStats: PhysicsTools/RooStatsCms/macros/examples/roostats_cl95_bc.C

Phys. Inst. III A

Summary

LED can be studied at the LHC collider

 CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- Sensitive to LED up to $\sim M_S =$ 2.3 TeV with 1 fb $^{-1}$ 2011 data

Summary

- LED can be studied at the LHC collider
- CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- ullet Sensitive to LED up to $\sim M_S =$ 2.3 TeV with 1 fb $^{-1}$ 2011 data

Summary

- LED can be studied at the LHC collider
- CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- ullet Sensitive to LED up to $\sim M_S =$ 2.3 TeV with 1 fb $^{-1}$ 2011 data

Summary

- LED can be studied at the LHC collider
- CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- ullet Sensitive to LED up to $\sim M_S =$ 2.3 TeV with 1 fb $^{-1}$ 2011 data

Summary

- LED can be studied at the LHC collider
- CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- ullet Sensitive to LED up to $\sim M_S =$ 2.3 TeV with 1 fb $^{-1}$ 2011 data

Summary

- LED can be studied at the LHC collider
- CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- ullet Sensitive to LED up to $\sim M_S =$ 2.3 TeV with 1 fb $^{-1}$ 2011 data

Summary

- LED can be studied at the LHC collider
- CMS detector is capable to detect experimental signatures of LED (here virtual gravitons)

Outlook

- Reach DØ limits with 2010/first 2011 data
- Increase sensitivity by studying systematics more precisly
- Only LO MC used so far, studies of NLO EW and QCD corrections on-going
- Compare signal MC to other generators like Sherpa in future
- Sensitive to LED up to $\sim M_S = 2.3$ TeV with 1 fb $^{-1}$ 2011 data