

Search for $B_s \rightarrow \mu\mu$ and the Reference Channel $B^+ \rightarrow J/\psi K^+$ in ATLAS

4th Annual Workshop of the Helmholtz Alliance, Dresden December 2nd, 2010

Federal Ministry of Education and Research

FSP 101

- Overview of rare *B*-decays
 - Motivation
 - B-physics trigger
 - $B_s \rightarrow \mu^+ \mu^-$ decays
 - $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$ (the reference channel)
- First studies of $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$
 - Datasets & event selection
 - B^{\pm} invariant mass

Motivation

- Standard Model
 - $B_s \rightarrow \mu^+ \mu^-$ forbidden at tree level
 - Lowest order contributions are CKM suppressed
 - $\mathscr{B}(B_s \to \mu^+ \mu^-) \text{ is small}$
- Standard Model extensions
 - $\mathscr{B}(B_s \to \mu^+ \mu^-)$ enhanced by several orders of magnitude
- Best upper limits so far by CDF and DØ:

	$\mathscr{B}(B_s \to \mu^+ \mu^-)$	
SM expectation	(3.6 ± 0.3) · 10 ⁻⁹	[AJ Buras, Prog. Theor. Phys. 122 (2009) 145
DØ limit	5.3 · 10 ⁻⁸ @ 95% CL	[ICHEP2010]
CDF limit	4.3 · 10 ⁻⁸ @ 95% CL	[ICHEP2010]

B-physics Trigger

- ATLAS trigger system: 3-level selection
- B-physics triggers based on muons
- Level 1 (L1) trigger
 - − For L ≥ 10^{33} cm⁻²s⁻¹, di-muon signature required at L1 ($p_T > 6 8$ GeV for both)
 - For L $\leq 10^{32}~cm^{-2}s^{-1}$, single-muon required at L1
- Level 2 (L2) trigger
 - Software trigger, partial event information, fast algorithms
 - Confirms L1 muons
 - Selects $m_{\mu\mu}$ range, e.g. for $B^+ \rightarrow J/\psi$ ($\mu^+\mu^-$) K^+ and $B_s \rightarrow \mu^+\mu^-$

B-physics Trigger

- Event Filter (EF)
 - Software trigger, full event information, offline-like algorithms
 - Further rejection of events
- Trigger efficiencies for $B_s \rightarrow \mu^+ \mu^-$:

L1 * L2 efficiency	EF w.r.t. L2	Overall efficiency
0.52	0.88	0.46

[CERN-OPEN-2008-020]

IIVERSITÄT

$B_s \rightarrow \mu^+ \mu^-$ Decays

• Branching ratio calculated relative to reference channel $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$:

Cancels out systematic uncertainties

$B_s \rightarrow \mu^+ \mu^-$ Decays

Selection of the B_s

- Pre-selection cuts:
 - $\mu^+\mu^-$ pairs: $p_{T,\mu 1} \ge 6.0 \text{ GeV},$ $p_{T,\mu 2} \ge 4.0 \text{ GeV},$ $|\eta| < 2.5$
 - Vertex fit χ^2 /NDF < 10
 - Transverse decay length
 L_{xy} < 20 mm
 - $4 \, \text{GeV} < m_{\mu\mu} < 7.3 \, \text{GeV}$

[CERN-OPEN-2008-020]

IIVERSITÄT

Bakul Gaur | 4th Annual Workshop of the Helmholtz Alliance, Dresden

Selection efficiencies:

	$B_s \rightarrow \mu^+ \mu^-$	$b\bar{b} ightarrow \mu^+ \mu^- X$ (background)
Total efficiency	0.04	$(2.0 \pm 1.4) \cdot 10^{-6}$
Events yield	5.7	14 ⁺¹³ _10

$-I_{\mu\mu} > 0.9$

 $B_{\varsigma} \rightarrow \mu^+ \mu^-$ Decays

 $- L_{xy} > 0.5 \text{ mm}$

Selection cuts:

Selection of the B_c

- $\alpha < 0.017 \text{ rad}$
- Mass in[$-\sigma$, 2σ], σ = 90 MeV

First Studies of the Reference Channel $B^+ \rightarrow J/\psi \ K^+$

with ATLAS Data @ 7 TeV

Datasets & Event Selection

Dataset:

- pp collisions data @ √s = 7 TeV
- Jun 24 Oct 18, 2010

ATLAS Online Luminosity

Event selection summary:

- 1. Good runs are selected based on data quality flags
- 2. Events are selected that passed the L1 muon trigger (open window)

10^₄

10³

 $\sqrt{s} = 7 \text{ TeV}$

7 TeV Data

J/ψ Candidates used for *B* Selection

Pre-selection of B[±] Candidates

Selection of B[±] Candidates

- J/ψ selection
 - $p_{T,\mu 1} > 4.0 \text{ GeV},$ $p_{T,\mu 2} > 2.5 \text{ GeV}$
 - Vertex $\chi^2/NDF < 10$
 - $2.9 < M_{J/\psi} < 3.2 \text{ GeV}$
- *K*[±] selection
 - $p_{T} > 2.5 \text{ GeV}$
- Cuts on all three tracks
 - Pixel hits > 1
 - SCT hits > 6
- *B*[±] selection
 - $p_{T} > 10.0 \text{ GeV}$
 - Vertex $\chi^2/NDF < 6$
 - $-4.0 < M_B < 7.0 \text{ GeV}$

[ATLAS-CONF-2010-098]

Summary & Outlook

- ATLAS will measure $\mathscr{B}(B_s \to \mu^+ \mu^-)$ using $B^+ \to J/\psi K^+$ as the reference channel
- ATLAS trigger system will allow collection of data for rare decay searches also at L = 10³⁴ cm⁻²s⁻¹
- Monte Carlo studies show good background rejection: 5.7 signal events over 14 background events (in 10 fb⁻¹ of data @ vs = 14 TeV)
- Studies of the reference channel are on going [ATLAS-CONF-2010-098 (Nov. 16, 2010)]
- Looking forward for additional data in 2011!

Extra Material

Dec. 2, 2010 Bakul Gaur | 4th Annual Workshop oBaheull Gauno | tJAlivenset, y Dafe Solegen

Background Channels

- Combinatorics from bb pairs producing 2 muons in the final state
- 2- or 3-body decays producing the final state particles K^{\pm} , π^{\pm} , μ^{\pm} as in $B_s \rightarrow K^- \mu^+ v$
 - Expected contribution is lower than combinatorics type of background

Channel	Branching fraction
$B^0 \rightarrow K^+ \pi^-$	$(1.82 \pm 0.08) \cdot 10^{-5}$
$B^0 \rightarrow \pi^+ \pi^-$	$(4.6 \pm 0.4) \cdot 10^{-6}$
$B^0 \rightarrow K^+ K^-$	< 3.7 · 10 ⁻⁷ @ 90% CL
$B_s \rightarrow \pi^+\pi^-$	< 1.7 · 10 ⁻⁴ @ 90% CL
$B_s \rightarrow \pi^+ K^-$	< 2.1 · 10 ⁻⁴ @ 90% CL
$B_s \rightarrow K^+ K^-$	< 5.9 · 10 ⁻⁵ @ 90% CL
$B_s \rightarrow K^- \mu^+ \nu$	~ 1.36 · 10 ⁻⁴
$B^0 \rightarrow \pi^- \mu^+ \nu$	$(1.36 \pm 0.15) \cdot 10^{-4}$

$B_s \rightarrow \mu^+ \mu^-$

Pre-selection of J/ψ Candidates

Bakul Gaur | 4th Annual Workshop of the Helmholtz Alliance, Dresden

NIVERSITÄT