Analysis of the decay $B_s \rightarrow J/\psi \phi$ at LHCb

A.Bien, Christoph Langenbruch, C.Linn, U.Uwer

Physikalisches Institut Universität Heidelberg

4th Annual Workshop: Physics at the Terascale

< 回 > < 三 > < 三 > -

Ξ - ΩQ(~

- **1** Motivation for the analysis of $B_s \rightarrow J/\psi \phi$
- 2 Reconstructing the decay $B_s \rightarrow J/\psi \phi$ using LHCb
- **3** Important ingredients for the extraction of ϕ_s
- 4 Prospects and Summary

≡▶ ≡ ∽੧<?

Time dev. governed by Schrödinger E.:

$$i\frac{d}{dt}\begin{pmatrix}B_s\\\bar{B}_s\end{pmatrix} = \left(\mathsf{M} - \frac{i}{2}\mathsf{\Gamma}\right)\begin{pmatrix}B_s\\\bar{B}_s\end{pmatrix}$$

$$\implies i\frac{d}{dt}B_L = (M_L - \frac{i}{2}\mathsf{\Gamma}_L)B_L \quad \text{light}$$
Diag. $i\frac{d}{dt}B_H = (M_H - \frac{i}{2}\mathsf{\Gamma}_H)B_H \quad \text{heavy}$

Mixing Parameters $\Delta m = M_H - M_L = 2|M_{12}| = (17.8 \pm 0.1) \,\mathrm{ps}^{-1}$ [CDF] Mixing frequency: $\Delta \Gamma = \Gamma_L - \Gamma_H \approx 0.1 \, \mathrm{ps}^{-1}$ Decay width diff.: Mixing phase: $\phi_M = 2 \arg V_{ts} V_{th}^*$

Beyond the SM New virtual particles in box diagrams

$$\phi_M \to \phi_M^{SM} + \Delta \phi^{NP}$$

 V_{ts}^*

Motivation for $B_s \rightarrow J/\psi\phi$ CP-violating Phase ϕ_s

- $B_s \rightarrow J/\psi\phi \text{ dominated by} \\ \overline{b} \rightarrow \overline{c}c\overline{s} \text{ tree level transition}$
 - Small penguin pollution
 - Dominated by single phase \u03c6_D = arg V_{cs} V^{*}_{cb}

- Interference between decay and mixing and decay gives rise to CP-violating phase ϕ_s $\phi_s = \phi_M - 2\phi_D$
- Precise Standard Model prediction $\phi_s = 2 \arg V_{ts} V_{tb}^* - 2 \arg V_{cs} V_{cb}^*$ $= -2\beta_s = -0.0360^{+0.0016}_{-0.0020} \operatorname{rad}$

Deviations
$$\phi_s \to \phi_s^{SM} + \Delta \phi^{NP}$$
 from SM can be attributed to NP

Motivation for $B_{\epsilon} \rightarrow J/\psi\phi$

Current Experimental Status

Using Unbinned max. Likelihood fit to statistically disentangle final state

- Observables:
- Physics parameters:
- Detector parameters:

 $\begin{array}{l} \theta, \varphi, \psi, \mathsf{t}, \textit{m}_{\mathcal{B}_s}, \text{initial } \mathcal{B}_s \text{ flavour} \\ \phi_s, \Gamma_s, \Delta \Gamma_s, \Delta m_s, |\mathcal{A}_0|^2, |\mathcal{A}_\perp|^2, \delta_\parallel, \delta_\perp \\ \text{time and mass resolution, bkg. description etc.} \end{array}$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ...

Differential Decay Rate for $B_s \rightarrow J/\psi \phi$

C. Langenbruch (PI Heidelberg), Physics at the Terascale $B_s \rightarrow J/\psi \phi$ at LHCb

Reconstruction of $B_s \to J/\psi\phi$

The LHCb Detector at the Large Hadron Collider

- = 5 \cdot 10¹¹ B mesons per nominal year (2 fb⁻¹) at $\sigma_{b\bar{b}} = 250 \mu \text{b}$
- All B flavour accessible: B^0 , B^+ , B_s , Λ_b , etc.
- $m_B \approx 5 \, {
 m GeV}$ production predominantly in forward direction
- Single arm forward spectrometer

(日) (王) (王) (王)

Reconstructing $J/\psi \rightarrow \mu^+ \mu^-$

- Muon trigger with low $p_T(\mu) > 1.3 \,\text{GeV}$
- Momentum resolution $\Delta p/p \sim 0.5\%$ from the Tracking system

• K/π separation via RICH detectors $\cos \theta_C = \frac{1}{n\beta}$

Reconstruction of $B_s \rightarrow J/\psi \phi$

 \blacksquare RICH1/2 have different n \rightarrow Cover momentum range $1-100\,{\rm GeV}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reconstruction of $B_{s} \rightarrow J/\psi\phi$

B_s Decay Time t

- Useful for signal/background separation
- Good σ_t needed to resolve fast B_s oscillation $\Delta m_s = 17.8\,{
 m ps}^{-1}$
- σ_t can be calibrated from prompt peak
- Current resolution $\sigma_t \sim 60 \, {
 m fs}$

200

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Data corresponds to ca. $34 \, {
 m pb}^{-1}$
- Clean mass peak for $t > 0.3 \, \mathrm{ps}$
- We are currently very busy analyzing this

Crucial ingredient: Flavour Tagging

Tagging = Determination of the B_s production flavour

Tagging not perfect, key quantities

- Tagging efficiency \(\epsilon_{\text{tag}}\)
- Mistag probability ω
- Effective tagging power $\epsilon_{\rm eff} = \epsilon_{\rm tag} (1 2\omega)^2$

Numbers from MC				
Tagger	ϵ_{tag} [%]	ω [%]	$\epsilon_{\rm eff}$ [%]	
Same side	26.4	34.9	2.4	
Opposite side	45.6	36.5	3.3	
Combined	55.7	33.3	6.2	

< ロ > < 団 > < 臣 > < 臣 > 三 の < @</p>

KK C. Langenbruch (PI Heidelberg), Physics at the Terascale

Important ingredients for the extraction of $\phi_{\mathfrak{c}}$

Crucial ingredient: Tagging Calibration

Do not rely on MC estimates for tagging calibration

Calibrate OS tagger with $B^{\pm} \rightarrow J/\psi K^{\pm}$ Reconstruct B^+ , No oscillation \Rightarrow Correct tagging decision known

• Calibrate SS tagger with $B_s o D_s \pi$

 \Rightarrow More in talk by Pavel Krokovny

Detector geometry and signal selection distorts the angular distributions:

- Effect mainly due to detector forward geometry 30 300 mrad
- Bias in $|A_0|$, $|A_{\perp}|$ if neglected \Rightarrow Needs to be corrected for in analysis
- Control on data possible using $B^0 \rightarrow J/\psi K^*$ ($P \rightarrow VV$ process!) [B⁰ mass, t=0.30 ps]

< □ > < □ > < □ >

DQC

御

Competitive with the Tevatron with 2011 data

2 fb
$$^{-1}$$
 at 14 TeV: $\sigma(\phi_s) \sim |\phi_s^{SM}| = 0.036$

DQC

E nac

(日) (モー (モー

- $B_s
 ightarrow J/\psi \phi$ the golden channel for ϕ_s
- Provides an interesting indirect probe for new physics
- Challenging measurement:
 - Time and angular analysis
 - Acceptances
 - Tagging
 - Background
- LHCb already delivered quality data in 2010: \sim 850 signal candidates
- Analysis is on the way
- News on ϕ_s from LHCb soon!

200

프 > 프

i	$A_{i}(t)$	$A_{i}(t)$	$f_i\left(\cos heta,arphi,\cos\psi ight)$
1	$\left A_{0}(\mathrm{t})\right ^{2}$	$\left \bar{A}_{0}(t)\right ^{2}$	$\frac{9}{32\pi}2\cos^2\psi\left(1-\sin^2\theta\cos^2\varphi\right)$
2	$\left A_{\parallel}(\mathrm{t})\right ^{2}$	$\left \bar{A}_{\parallel}(t)\right ^{2}$	$rac{9}{32\pi}\sin^2\psi\left(1-\sin^2 heta\sin^2arphi ight)$
3	$\left A_{\perp}(\mathrm{t})\right ^{2}$	$\left \bar{A}_{\perp}(\mathrm{t})\right ^{2}$	$\frac{9}{32\pi}\sin^2\psi\sin^2\theta$
4	$\Im (A^*_{\parallel}(\mathrm{t})A_{\perp}(\mathrm{t}))$	$\Im igl(ar{\mathcal{A}}^*_{\parallel}(\mathrm{t}) ar{\mathcal{A}}^+_{\perp}(\mathrm{t}) igr)$	$-rac{9}{32\pi}\sin^2\psi\sin2 heta\sinarphi$
5	$\Re \left(A_0^*(t) A_{\parallel}(t) \right)$	$\Re igl(ar{\mathcal{A}}_0^*(\mathrm{t})ar{\mathcal{A}}_{\parallel}(\mathrm{t}) igr)$	$\frac{9}{32\pi\sqrt{2}}$ sin 2ψ sin ² θ sin 2φ
6	$\Im (A_0^*(t)A_{\perp}(t))$	$\Im (\bar{A}_0^*(t)\bar{A}_\perp(t))$	$\frac{32\pi\sqrt{2}}{9}\sin 2\psi \sin 2\theta \cos \varphi$

9.00

Backup: Amplitudes for B_s

$$\begin{aligned} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi \sin\left(\Delta mt\right) \right] \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi \sin\left(\Delta mt\right) \right] \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right) \right] \\ \Im\left(A_{\parallel}^{*}(t)A_{\perp}(t)\right) &= |A_{\parallel}(0)| |A_{\perp}(0)| e^{-\Gamma t} \left[-\cos\left(\delta_{\perp} - \delta_{\parallel}\right) \sin\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi \sin\left(\Delta mt\right) \right] \\ &+ \sin\left(\delta_{\perp} - \delta_{\parallel}\right) \cos\left(\Delta mt\right) - \cos\left(\delta_{\perp} - \delta_{\parallel}\right) \cos\phi \sin\left(\Delta mt\right) \right] \\ \Re\left(A_{0}^{*}(t)A_{\parallel}(t)\right) &= |A_{0}(0)| |A_{\parallel}(0)| e^{-\Gamma t} \cos\delta_{\parallel} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi \sin\left(\Delta mt\right) \right] \\ \Im\left(A_{0}^{*}(t)A_{\perp}(t)\right) &= |A_{0}(0)| |A_{\perp}(0)| e^{-\Gamma t} \left[-\cos\delta_{\perp} \sin\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi \sin\left(\Delta mt\right) \right] \end{aligned}$$

Backup: Amplitudes for \bar{B}_s

$$\begin{split} \left|\bar{A}_{0}(t)\right|^{2} &= \left|A_{0}(0)\right|^{2} e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right)\right] \\ \left|\bar{A}_{\parallel}(t)\right|^{2} &= \left|A_{\parallel}(0)\right|^{2} e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right)\right] \\ \left|\bar{A}_{\perp}(t)\right|^{2} &= \left|A_{\perp}(0)\right|^{2} e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi \sin\left(\Delta mt\right)\right] \\ \Im\left(\bar{A}_{\parallel}^{*}(t)\bar{A}_{\perp}(t)\right) &= \left|A_{\parallel}(0)\right| \left|A_{\perp}(0)\right| e^{-\Gamma t} \left[-\cos\left(\delta_{\perp} - \delta_{\parallel}\right) \sin\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right)\right] \\ \Re\left(\bar{A}_{0}^{*}(t)\bar{A}_{\parallel}(t)\right) &= \left|A_{0}(0)\right| \left|A_{\parallel}(0)\right| e^{-\Gamma t} \cos\delta_{\parallel} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right)\right] \\ \Im\left(\bar{A}_{0}^{*}(t)\bar{A}_{\perp}(t)\right) &= \left|A_{0}(0)\right| \left|A_{\perp}(0)\right| e^{-\Gamma t} \left[-\cos\delta_{\perp} \sin\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right)\right] \\ \Im\left(\bar{A}_{0}^{*}(t)\bar{A}_{\perp}(t)\right) &= \left|A_{0}(0)\right| \left|A_{\perp}(0)\right| e^{-\Gamma t} \left[-\cos\delta_{\perp} \sin\phi \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi \sin\left(\Delta mt\right)\right] \\ = \sin\delta_{\perp} \cos(\Delta mt) + \cos\delta_{\perp} \cos\phi \sin(\Delta mt) \right] \\ \end{split}$$

Backup: *B*_s Lifetime Acceptance

Lifetime unbiased trigger+selection: Large effort not to bias lifetime distr.

Biased trigger gives higher yield

- Fit needs to correct for this
- Control on data possible using the high statistics channels $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B^0 \rightarrow J/\psi K^*$