

Model Unspecific Search in CMS: Results with latest data

Paul Papacz

Erik Dietz-Laursonn, Thomas Hebbeker, Arnd Meyer, Mark Olschewski, Holger Pieta, Stefan Schmitz Nayeem Naimuddin, Shivali Malhotra

III. Physikalisches Institut A, RWTH Aachen Department of Physics, University of Delhi

01.12.2010

Outline

- Introduction
- 2 Implementation
- 3 Looking at Data
- 4 Summary/Outlook

CMS @ LHC

CMS

- length $\approx 21~\mathrm{m}$
- diameter $\approx 16~\mathrm{m}$
- mass $\approx 12500 \mathrm{\ t}$
- \bullet solenoid up to $\approx 4~T$

Integrated Luminosity

Motivation

Challenge

Many competing models!
Can we have (dedicated) analyses for all of these?

What are the models no one has thought of yet?

Example: SUSY

A whole "model framework" with many free parameters.

Idea:

Model independent search!

Minimise the theoretical bias:

- Assume only one model: The Standard Model
- Search for deviations from the SM expectation in many final states

troduction Implementation Looking at Data Summary/Outlook backu_l

Outline

- Introduction
- 2 Implementation
- 3 Looking at Data
- 4 Summary/Outlook

MUSiC Concept

- Select good events and objects
- Sort events by their physics object content $(\mu, e, \gamma, (b-)jets, \cancel{E}_T)$ into event classes
- Kinematic distributions of interest: $\sum p_{\mathrm{T}}$, M_{inv} (, E_{T})
- Run the search algorithm on these distributions
- distributions Find the most significant

 connected bin region in every
 distribution

Implementation Looking at Data Summary/Outlook backs

Search algorithm

Most significant region:

In every distribution of every event class: Find the region with the lowest probability of MC to deviate even more, i. e. the smallest p-value.

MUSiC's p-value

Standard treatment:

Convolute a Poisson (statics) with a **Gaussian** (systematics) to model the uncertainties on the mean.

Alternative approach:

Use a Lognormal prior.

- \rightarrow Better treatment of some uncertainties, worse for others.
- \rightarrow Good cross check.

"Look-elsewhere effect"

Considering many regions in many distributions it becomes more probable to see a deviation by chance due to statistical fluctuations.

experiments

Many MC-only

Toy experiments:

- Randomise MC expectation bin by bin, taking all known uncertainties into account
- Scan for most significant region
- Count pseudo experiments with higher significance than data
- \bullet $\tilde{p} =$ Fraction of toy experiments with $p_{\rm tov} < p_{\rm data}$

Outline

- Introduction
- 2 Implementation
- 3 Looking at Data
- 4 Summary/Outlook

MUSiC on 7 TeV data

Data:

Used SM backgrounds: Multijet, electroweak, top, γ + Jets, low mass resonances

Major systematic uncertainties:

MC statistics, luminosity (11 %), cross section (5 %), PDF, JES (5 %)

Cuts:

Require at least one e $(p_{\scriptscriptstyle T}>60~{
m GeV})$ or $\mu~(p_{\scriptscriptstyle T}>25~{
m GeV})$ Allows **loose** p_{τ} -Selection for other objects

Object	$p_{\scriptscriptstyle m T}^{\sf min}$ / GeV
е	25
γ	25
μ	18
Jet	50
(MET	30)

$ilde{p}$ distribution

Without MET: Good agreement with MC prediction!

Few discrepant event classes can be explained by instrumental effects or simulation

Cross check: Rediscovering the Standard Model

Removed the top quark MC samples: excess in a wide range of event classes.

tt "most significant"

Preview: MET

MET not yet fully implemented in MUSiC but: Promising first results

Outline

- Introduction
- 2 Implementation
- 3 Looking at Data
- 4 Summary/Outlook

Summary and outlook

Today:

- Model independent search that looks for deviations from the SM
- Complementary to dedicated analyses
- Possible deviations need detailed investigation

Data results:

- Globally good agreement
- Few deviations left (under control)
- Able to rediscover SM physics (in non-standard final states)

Future:

Analyse more final states

backup

$oldsymbol{p}$ -value

Definition:

$$p \equiv \mathcal{P}(T(\boldsymbol{X}) \ge T(\boldsymbol{x}) | H_0)$$

With:

 $oldsymbol{X}=\mathsf{Possible}$ data set

 $oldsymbol{x} = \mathsf{Observed} \ \mathsf{data} \ \mathsf{set}$

T = Test statistic= (number of entries in our case)

 $H_0 = \text{Null hypothesis} = \text{SM}$

Often *p*-values are expressed in terms of **standard deviations**.

MUSiC's p-value

Use a **Gaussian prior** to model the uncertainties on the mean of a *Poisson counting experiment* \Rightarrow prior predictive *p*-value.

$$p^{\mathsf{N}} = \begin{cases} \sum_{i=N_{\mathsf{data}}}^{\infty} C \cdot \int\limits_{0}^{\infty} \mathrm{d}\lambda \, \exp\left(-\frac{(\lambda - N_{\mathsf{SM}})^2}{2\,\sigma_{\mathsf{SM}}^2}\right) \cdot \frac{\mathrm{e}^{-\lambda}\,\lambda^i}{i!} & \text{if } N_{\mathsf{data}} \geq N_{\mathsf{SM}} \\ \sum_{i=0}^{N_{\mathsf{data}}} C \cdot \int\limits_{0}^{\infty} \mathrm{d}\lambda \, \exp\left(-\frac{(\lambda - N_{\mathsf{SM}})^2}{2\,\sigma_{\mathsf{SM}}^2}\right) \cdot \frac{\mathrm{e}^{-\lambda}\,\lambda^i}{i!} & \text{if } N_{\mathsf{data}} < N_{\mathsf{SM}} \\ & \text{normalisation} & \text{systematics} & \text{statistics} \end{cases}$$

with:

 $N_{\rm SM}=$ Pure SM (Monte Carlo) expectation in this region $\sigma_{\rm SM}=\sqrt{\sigma_{\rm stat}^2+\sum_i\sigma_{i,{\rm syst}}^2}=$ Uncertainty on the MC prediction for the SM

Region with the smallest p-value: Region of Interest

Another approach: Lognormal prior

The "look-elsewhere effect"

Considering **many regions** in **many distributions** it becomes more probable to see a deviation by chance due to statistical fluctuations.

The <u>single region</u> p-value alone is not a good significance estimator. \Rightarrow Compute "new" estimator \tilde{p} :

$$\tilde{p} = \frac{\text{number of } H_0 \text{ experiments with a region featuring } p < p_{\text{data}}}{\text{total number of } H_0 \text{ experiments}}$$

Easy (toy) example: all regions statistically independent

$$\tilde{p}=1-(1-p_{\mathrm{data}})^n$$
 ; $n=\mathrm{number\ of\ regions}$

In realistic cases regions are correlated due to shared bins and/or **correlated** systematic uncertainties!

Solution:

Dice a sufficiently large number of pseudo experiments in order to determine \tilde{p} .

Determination of $ilde{P}$

- In every distribution the data gives **one most significant region**, i. e. smallest p-value (p_{data}).
- 2) Dice the MC expectation according to uncertainties many times (pseudo experiments) to get a distribution of p-values.
- $\widehat{\mathbf{3}}$ Get the "relative number of pseudo experiments with $p < p_{\mathsf{data}}$ " $= \widetilde{p}$.

