# SUSY search in the fully hadronic final state

Christian Autermann, Christian Sander, Peter Schleper, Matthias Schröder, Torben Schum, <u>Jan Thomsen</u>

#### **University of Hamburg**

Terascale Alliance, Dresden 2010

GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung











- Introduction to SUSY search in the fully hadronic channel
- Data-driven background estimation methods: QCD
  - Factorization method (ABCD)
  - Rebalance and Smear method
- Data-driven background estimation method: tt & W+jets
  - Lost Lepton method
  - Tag and Probe method
- Combination of background estimates
- Summary





At the LHC particles with colour charge are produced dominantly. The initial states are therefore squark/gluino, 2 squarks or 2 gluinos.











**Direct Lepton Veto (DLV) mainly rejects leptonic Ttbar and W+jet events** 

**Hadronic SUSY** 







**Estimating background in HH:** Factorization-method for QCD Resolution for jet smearing for QCD Lost Lepton in ttbar and W+jets → Limit / reach calculation

Events after selection

- Even if the simulation describes our detector well:
  - QCD multijet dynamics poorly modelled
  - Lepton isolation/identification (in)efficiencies should be measured in data





- In QCD: Missing HT is ۲ produced via jet mismeasurement
- min ∆∲(jet<sub>1,2,3</sub> **Correlation between** worst measured jet and Missing HT vector
- Influence on Missing ۲ HT from other jets approximately Gaussian (since coming from Gaussian part of jet resolution)



Background regions (A,B,D) are QCD dominated

υH

茁

UH

- Ratio of events that pass the min ΔΦ-cut to events that fail the cut falls exponentially with HTmiss
- Example SUSY signal (LM0) has impact on high Missing HT region
- Control region for the fit must be in the QCD dominated region
- Variation of upper boundary shows the influence on the extrapolation









## Motivation: Data driven prediction of MHT from QCD

### Rebalance & Smear method:

- Rebalance detector level jets to particle level jets
- Smear rebalanced jets to predict MHT

- Jet response enters twice
- Non-Gaussian tails are important for high MHT tail







# Unbinned maximum likelihood fit of dijet imbalance

## Assumption Two jets with equal particle level jet $p_T$ Method Adjust response to describe measured $p_T$ imbalance



MC Closure of the method — agreement to true resolution Data Measured resolution 10% larger than simulated



## **Test of Rebalance and Smear**





- Good agreement between Prediction and MC for HT and MHT
- Shown after jet- and cleaning-cuts
- Resolution taken from MC with tails



Also tau -> electron/muon in Lost Lepton method – hadronic tau may also be present





<u>Reconstruction efficiencies ( $\epsilon_{ID}$ ):</u>

- function of  $P_T$  and  $\eta$
- from tag and probe method  $Z \rightarrow ll$ <u>Isolation efficiencies ( $\epsilon_{lso}$ ):</u>
- function of ∆R(lep,jet) and P<sub>T</sub> to resolve differences between tt̄,W+jet and Z-events

Acceptance:

•  $P_T/\eta$  distribution from simulation (small uncertainties)

## Total tt and W+jets background = Bkg(non-isolated) + Bkg(non-identified) + Bkg(out of acceptance)

UH

끰

## Tag & Probe Muon Isolation Efficiency





15/pb - data

- Gauss fit to Z-peak for passed and failed isolation
- Sideband subtraction of background
- Low statistic for small  $\Delta R(lep.jet)$  in Z-Sample
- High efficiency except for small  $\Delta R$  and  $P_{_T}$







- Shape and predicted number of events agree within uncertainties
- Largest systematic uncertainty comes from the efficiency measurements
- Full statistic in control sample used (tt ~ a few fb<sup>-1</sup> W+jets ~400pb<sup>-1</sup>), but #events rescaled to 100 pb<sup>-1</sup>







Scaled to 100/pb

- Comparison between pure MC and data driven methods on MC
- Systematic uncertainies used for MC: Jet Energy Scale, Luminosity, Lepton Isolation
- Main Systematic uncertainties from data driven methods: JES (QCD), Tag & Probe efficiencies (lost lepton), Error from fit (ABCD)







- Use data driven methods where highest uncertainties in MC expected
- Add estimation methods from other groups
- Result not public, yet





- QCD, tt and W+jets are very important backgrounds, data-driven estimation methods are in place (@Hamburg)
- No overlap between methods complementary
- Search is running and first results will be available soon
- Full hadronic channel has best reach for SUSY searches if backgrounds can be estimated robustly







# BACKUP











An exponential function approximates the Gaussian model in the region where it is valid (left), and the extrapolation to higher Missing  $H_T$ (right) approximates the influence of the tail

**Hadronic SUSY** 









#### **Relaxed**

#### **Selection cuts:**

Jet<sub>1</sub> > 90 Gev (instead of HT cut) Jet<sub>2,3</sub> > 50 GeV  $|eta|_{1,2,3} < 2.5$ Lepton Veto HLT Jet50U trigger



- Tail in data (high Missing HT): jet resolutions ~10% higher than expected, other detector issues, physics?
- First look: Signal region Missing HT > 120 GeV



- Tail coming from most mismeasured jet not aligned with Missing HT vector
- Exponential function approximates the Gaussian model where it is valid and is able to describe the tail





## min $\Delta \phi$ in Missing HT slices







# Motivation: data driven prediction of MHT from QCD

- Rebalance+Smear method [Sue Ann]
  - Rebalance detector level jets to particle level jets
  - Smear rebalanced jets to predict MHT
- Response enters twice









# How to Measure the Jet $p_T$ Resolution?

Response  $R = p_T/p_T^{gen}$ Resolution  $\sigma = \sqrt{V(R)}$ 



- Measurement using  $p_{T}$  balance
  - Balancing of jet and well measured object e.g. γ+jet
  - Imbalance of dijets

$$A = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} = \frac{\Delta p_{T}}{p_{T}^{ave}}$$

$$\sigma(A) = \sigma(R)/\sqrt{2}, \text{ for } p_{\mathrm{T}}^{\mathrm{ave}} = p_{\mathrm{T}}^{\mathrm{gen}}$$







- Construct a control sample with jets and one clean muon
- Correct for the different branching fractions of hadronic  $\tau$  and  $\mu$
- Correct for reconstruction- / isolation efficiency, acceptance and  $\mu$  from  $\tau$
- Replace the muon by a jet and missing Et from the neutrino
- Perform selection on new HT and MHT distributions

Ш

Ĥ



## **Background Properties**





#### Problem:

Different topology in Ttbar and W+jet events: Boosted top emits W (and therefore lepton) and b close to each other

- Closest jet is in most cases the associated b-jet
- Isolation efficiency lower for Ttbar events
- Efficiency in bins of  $\Delta R$

Low statistic in control sample in bins of small  $\Delta R$ 

- Only a very rough binning in Pt possible
  - Increased uncertainties

1.12.2010





Efficiency vs DrVsPtRel





## Data: Efficiencies





- Example: Tag & Probe Method for reconstruction Efficiency
- All steps tested on data, but rough binning due to low statistic
- ~ 30-50 pb<sup>-1</sup> integrated Luminosity needed for useful estimate





- ~ 30% QCD contamination in control sample expected
- Only a problem with relaxed cuts
- Efficiencies taken from T&P method on large MC sample
- Waiting for more data...





#### Lost Lepton Method:

- $\bullet$  Low statistics in control sample in small  $\Delta R\mbox{-bins}$  these events get a large correction factor
  - This can be reduced by binning in jet multiplicity but an error has to be assigned to the differences in the samples
- Uncertainty of the isolation efficiency
  - To a large extend this is a statistical uncertainty with T&P
  - Can also be reduced using jet multiplicity
- Uncertainty of the electron reconstruction efficiency
  - Overestimated at the moment
  - Change binning
- Acceptance from MC
- Treatment of BSM contamination (e.g. Reshuffling method)





# Unbinned maximum likelihood fit of dijet imbalance

Assumption Two jets with equal particle level jet  $p_T$ Method Adjust response to describe measured  $p_T$  imbalance

Probability density (pdf) of dijet event

$$g_{\mathbf{b}}(p_{\mathsf{T},1}, p_{\mathsf{T},2}) \propto \int_{0}^{\infty} \mathrm{d}p_{\mathsf{T}}^{\mathsf{true}} f\left(p_{\mathsf{T}}^{\mathsf{true}}\right) \cdot \mathbf{r}_{\mathbf{b}}\left(p_{\mathsf{T},1}|p_{\mathsf{T}}^{\mathsf{true}}\right) \cdot \mathbf{r}_{\mathbf{b}}\left(p_{\mathsf{T},2}|p_{\mathsf{T}}^{\mathsf{true}}\right)$$

- $r_{\rm b}(p_{{\rm T},i}|p_{{\rm T}}^{\rm true})$ : pdf of the jet  $p_{{\rm T}}$
- $f(p_T^{\text{true}})$ : pdf of the particle jet  $p_T$
- Biases from additional jets correction by extrapolation
- 2 Fit of response  $r_{\rm b}(p_{\rm T,i}|p_{\rm T}^{\rm true})$ 
  - Results for Gaussian response
  - Strategy to measure full response function





Resolution Measurement with Unbinned Fit

Example: Gaussian Response

## Resolution from Unbinned Fit in MC Simulation and Data

MC Simulation (closure test)







• Measured resolution as function of  $p_{\rm T}^{\rm true}$ 

MC Simulation Closure of the method — agreement to true resolution Data Measured resolution 10% larger than simulated (as observed before)





To cover all possible basic SUSY signatures CMS divides its searches in the following **R**eference **A**nalyses:

| Hadronic search | RA1 | Exclusive (mainly dijets)            |
|-----------------|-----|--------------------------------------|
|                 | RA2 | Inclusive                            |
|                 | RA3 | Photon +X (gauge med. SUSY breaking) |
| Leptonic search | RA4 | Single lepton                        |
|                 | RA5 | Same sign dilepton                   |
|                 | RA6 | Opposite sign dilepton               |
|                 | RA7 | Trilepton                            |
|                 | RA8 | Dilepton + Photon                    |

Hadronic inclusive search (RA2) has the best reach for most of the SUSY parameter space RA2 contribution from HH: data driven background estimation for QCD and Ttbar/W+jets and framework for combining these





