Tungsten H-CAL Test Beam at CERN

A. Münnich

1.12.2010, LCForum Dresden

Outline

Motivation

- Why is a tungsten HCAL needed?
- What have we learned from simulation?

W HCAL Prototype

- Hardware
- Test-beam Setup
- First Results

Additional Technologies

- T3B
- Micromegas

Calorimetric resolution is driven by intrinsic resolution and by leakage.

- Reduce leakage
 - = more interaction lengths
 - Deeper calorimeter or
 - Denser calorimeter

Depth limited by:

- Feasible coil size:
 - → larger coil with smaller B
 - → larger B with smaller coil
- Tracker size:
 - \rightarrow larger tracker
 - $\rightarrow \text{better momentum} \\ \text{resolution}$

Simulation

- Shorter HCAL
 - \rightarrow more leakage
 - \rightarrow worse resolution
- Flat region reached earlier in tungsten → shorter HCAL possible

- E_{jet} = 45.5 GeV: res.constant, dominated by calorimeter res.
- E_{jet} > 100 GeV: dominated by leakage and confusion

Final decision on HCAL depth:

7.5 λ (+1 λ ECAL)

Tungsten

Benefits

- $\bullet~$ More contained showers $\rightarrow~$ less leakage with same depth
- $\bullet\,$ Smaller shower diameter $\rightarrow\,$ better separation of showers

But: Experimental verification needed because

- So far: Tungsten used in ECALs typically 1 λ deep
- No experience with tungsten HCALs 4-9 λ
- Simulation of hadronic showers in tungsten not validated
 - No MC/data comparisons
 - No validation for high granularity
 - $\bullet~$ Low energy neutrons $\rightarrow~$ effect time structure of shower
 - \rightarrow requirements for time stamping

Final Goal:

Good energy resolution with Particle Flow using the whole detector

W-HCAL

Absorber Material

30 plates of 1 cm thick tungsten: λ_{int} (W) = 10 cm , X_0(W) = 0.35 cm

Compared to steel:

- Less visible energy (ionization)
- More neutrons (spallation, slow)

Active Material

- Scintillator tiles: 3x3 cm², 6x6 cm²
- Light collection via WLS fibres readout using multi-pixel SiPMs

Beam at CERN/PS (T9) and Data Sets

19 days of data taking

• Typical working mode: 2-3 spills per 45 seconds, 24-33 Hz DAQ rate

A. Münnich

 20 million events with energies between 2 and 10 GeV at 1 GeV intervals, positive and negative polarity

Particle Mix in T9			
p(GeV/c)	e+ [%]	π ⁺ [%]	p [%]
2	55	30	15
3	30	50	20
4	15	60	25
5	10	60	30
6	5	55	40
7	5	50	45
8	0	45	55
9	0	40	60
10	0	40	60

Test Beam Setup

Particle ID

- 2 Cherenkov counters for particle ID to be used offline to select between electrons, pions and protons
- Gas: C0₂, Cherenkov A: 3m long, Cherenkov B: 5m long

Tracking

3 wire chambers to measure the beam profile and provide extrapolation to HCAL

First Results: Event Display

- Data analysis has started.
- Obtain a good calibration first (ongoing work).
- Then reconstruct data.

Calibration

mip = energy deposited by 1 muon in 1 tile

A. Münnich

First Results: Energy Deposition

- Used old energy calibration from 2007
- Shower profile as expected
- Separation of particles based on shower profile possible
- μ contribution visible in most samples

ALL PLOTS VERY PRELIMINARY

First Results: Particle ID

- Ch. A at low pressure (0.2 bar) to ID electrons
- Ch. B at higher pressure (3 bar) to distinguish between pions and protons
- Separation better at higher energy, also efficiency of Cherenkovs better

T3B: Tungsten Timing Test Beam

The Test Beam Setup of T3B

- One layer = row of 15 scintillator tiles
- Tile size: 3 x 3 x 0.5 cm³
- SiPM: Hamamatsu MPPC-50C
- Readout: 4 x PicoScope 6403
 - Fast Digitizer (1.25GSa/s on 4CH)
 - Deep memory (1GSa)
 - Fast data capturing (up to 1MHz)

Munich, 30.11.2010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Weuste/Soldner

A. Münnich

Tungsten H-CAL Test Beam at CERN

2

T3B: Very Preliminary Results

First timing plot:

- No Correction for: photon travel time in scintillator
 exponential drop of signal
- No double particle rejection

plot: L.Weuste, C.Soldner

Micromegas: Digital HCAL

source: M. Chefdeville

First prototypes : 6x16 and 12x32 cm² with 1 cm² pads (2008-2009)

Typical MIP signal 20 fC (gas gain of 10⁴) Gassiplex electronics, mezzanine boards

At 1.5 fC threshold:

- Efficiency 97 % with variations below 1 %
- Multiplicity below 1.1

First prototype of 1 m2 made of 6 boards of 32x38 cm²

Micromegas: First Results

source: M. Chefdeville

TB in W structure, oct-nov 2010, PS/T7-T9 Micromegas prototype acts as layer 31st

Motivation : measure tails of hadronic showers Use shower start information from AHCAL

- → common offline event reconstruction
- → synchronization of AHCAL/Micromegas DAQ

Long time to bring the synchro to work \to 3 days of data taking \to About 2.10⁶ triggers recorded at 3, 5, 9 and 10 GeV

What we have learned:

- Working with tungsten mechanically
- CALICE DAQ and software
- Test beam procedures and preparation

What is next:

- Data analysis has started
- Next test beam at SPS in 2011
 - 10 additional tungsten plates
 - Energies up to 400 GeV
 - Possible operation with tail catcher from CALICE
 - RPC, Micromegas or other technologies also planned to be included again
- After 2011: Use next generation scintillator prototype to measure the time structure of hadron showers (DESY, Heidelberg, Munich, Wuppertal, CERN)

