

Threshold resummation for top-quark production

(and other coloured particles)

Christian Schwinn

— Univ. Freiburg —

01.12.2010

(Based on M.Beneke, P.Falgari, CS, arXiv:0907.1443 [hep-ph], arXiv:1007.5414 [hep-ph]

M.Beneke, M.Czakon, P.Falgari, A.Mitov, CS arXiv:0911.5166 [hep-ph]

M.Beneke, P.Falgari, S. Klein, CS, in progress)

Introduction

Pair production of heavy coloured particles at Tevatron/LHC

 $NN' \to HH' + X$

• N, N': pp, $p\bar{p}$; HH': top-quark, squark, gluino... pairs

Precise knowledge of total cross sections:

- top-quarks: sensitivity on mass, constraining gluon PDFs
- new particles: Exclusion bounds, model discrimination,...

Experimental knowledge of $t\bar{t}$ cross section:

Tevatron: $\Delta \sigma_{t\bar{t}} = 6.8\%$; LHC Goal: $\Delta \sigma_{t\bar{t}} \approx 5\%$

Theory status:

NLO + higher-order soft gluons $\Rightarrow \Delta \sigma_{t\bar{t}} \approx 10\%$

Experimental knowledge of $t\bar{t}$ cross section:

Tevatron: $\Delta \sigma_{t\bar{t}} = 6.8\%$; LHC Goal: $\Delta \sigma_{t\bar{t}} \approx 5\%$

Theory status: NLO + higher-order soft gluons $\Rightarrow \Delta \sigma_{t\bar{t}} \approx 10\%$

Building blocks for NNLO:

- two-loop $t\bar{t}$, $(m_t \rightarrow 0 : Czakon/Mitov/Moch 07;$
 - $q\bar{q}$: Czakon 08; Bonciani et.al. 08/09)
- one-loop $t\bar{t} + j$ (Dittmaier/Uwer/Weinzierl 07)

 $t\bar{t}$ squared

(Körner et.al. 05-09, Anastasiou/Mert-Aybert 08)

• tree $t\bar{t} + jj$ (IR subtraction: Czakon 10)

Top-pair production: two LO subprocesses:

• $q\bar{q}$ channel: colour octet, spin triplet

$$\hat{\sigma}_{q\bar{q}}^{(8)} = \frac{\pi\beta}{9m_t^2} \left[1 + \frac{\alpha_s}{4\pi} \left(\frac{-2\pi^2}{2N_c} \frac{1}{\beta} + 8C_F \log^2 8\beta^2 - (32C_F + 4N_C) \log 8\beta^2 \right) + \dots \right]$$

• gg channel: colour singlet/octet, spin singlet

$$\hat{\sigma}_{gg}^{(1)} = \frac{5\pi\beta}{192m_t^2} \left[1 + \frac{\alpha_s}{4\pi} \left(2C_F \pi^2 \frac{1}{\beta} + 8N_C \log^2 8\beta^2 - 32N_C \log 8\beta^2 \right) + \dots \right]$$
$$\hat{\sigma}_{gg}^{(8)} = \frac{\pi\beta}{96m_t^2} \left[1 + \frac{\alpha_s}{4\pi} \left(\frac{-2\pi^2}{2N_C} \frac{1}{\beta} + 8N_C \log^2 8\beta^2 - (32N_C + 4N_C) \log 8\beta^2 \right) + \dots \right]$$

 \Rightarrow Universal behaviour depending on initial/final colour states

C. Schwinn

Threshold resummation

Counting of threshold corrections:

$$\hat{\sigma}_{pp'} \propto \sigma^{(0)} \exp\left[\underbrace{\ln\beta g_0(\alpha_s \ln\beta)}_{(LL)} + \underbrace{g_1(\alpha_s \ln\beta)}_{(NLL)} + \underbrace{\alpha_s g_2(\alpha_s \ln\beta)}_{(NNLL)} + \ldots\right]$$

$$\times \sum_{k=0}^{k} \left(\frac{\alpha_s}{\beta}\right)^k \times \left\{1(LL, NLL); \alpha_s, \beta(NNLL); \ldots\right\}:$$

Combination of Coulomb- and soft effects? Heavy particles nonrelativistic near threshold:

 $E \sim m \beta^2 \;, ~~ ert ec p ert \sim m eta$

soft gluon momenta of same order: $q_s \sim m\beta^2 \sim E$ \Rightarrow heavy particles "feel" soft radiation **Combination of Coulomb- and soft effects?** Heavy particles nonrelativistic near threshold:

 $E \sim m \beta^2 , \quad |\vec{p}| \sim m \beta$

soft gluon momenta of same order: $q_s \sim m eta^2 \sim {E \over E}$

 \Rightarrow heavy particles "feel" soft radiation

Factorization of cross section

(Beneke, Falgari, CS 09/10)

$$\hat{\sigma}_{pp'\to HH'}|_{\hat{s}\to 4M^2} = \sum_{R,i} H_i W_i^R \otimes J^R$$

Hard, soft and Coulomb functions:

$$H_i =$$
, $W_i^R =$, $J^R =$

Soft radiation "sees" only total colour charge *R* of heavy particles (Singlet, octet,...)

Combination of Coulomb- and soft effects? Heavy particles nonrelativistic near threshold:

 $E \sim m \beta^2 \;, ~~ |\vec{p}| \sim m \beta$

soft gluon momenta of same order: $q_s \sim m eta^2 \sim {m E}$

 \Rightarrow heavy particles "feel" soft radiation

Factorization of cross section

(Beneke, Falgari, CS 09/10)

$$\hat{\sigma}_{pp'\to HH'}|_{\hat{s}\to 4M^2} = \sum_{R,i} H_i W_i^R \otimes J^R$$

- disentangles hard, soft and Coulomb contribution (for *S*-wave production and up to NNLL)
- can perform simultaneous summation of threshold Logs and Coulomb corrections

Factorization scale dependence of *H*, *W* cancels against PDFs:

$$\frac{d\sigma}{d\mu} = \frac{d}{d\mu} \left(f_1 \otimes f_2 \otimes H \otimes W \otimes J \right) = 0$$

- $\frac{df_i}{d\mu} \Rightarrow$ Altarelli-Parisi equation (3-loop: Moch/Vermaseren/Vogt 04/05)
- $\frac{dH_i}{d\mu} \Rightarrow$ related to IR singlarities (2-loop: Becher, Neubert; Ferroglia et.al. 09)
- ⇒ RGE for soft function (NNLL: Beneke/Falgari/CS; Czakon/Mitov/Sterman 09)

Factorization scale dependence of *H*, *W* cancels against PDFs:

$$\frac{d\sigma}{d\mu} = \frac{d}{d\mu} \left(f_1 \otimes f_2 \otimes H \otimes W \otimes J \right) = 0$$

- $\frac{df_i}{d\mu} \Rightarrow$ Altarelli-Parisi equation (3-loop: Moch/Vermaseren/Vogt 04/05)
- $\frac{dH_i}{d\mu} \Rightarrow$ related to IR singlarities (2-loop: Becher, Neubert; Ferroglia et.al. 09)
- \Rightarrow RGE for soft function (NNLL: Beneke/Falgari/CS; Czakon/Mitov/Sterman 09)

Resummation:

- evolve hard function from $\mu_h \sim 4m_t$ to μ_f
- evolve soft function from μ_s to μ_f $f_{1(\mu_f)f_2(\mu_f)H(M,\mu_f)J^{R_\alpha}W^{R_\alpha}(\omega,\mu_f)}$ (Mellin space: Korchemsky/Marchesini 92 momentum space: Becher/Neubert 06)

• (N)LO Coulomb-Green function

(Fadin/Khoze 87; Beneke/Signer/Smirnov 99,...)

Threshold expansion at $\mathcal{O}(\alpha_s^2)$

All threshold enhanced $\mathcal{O}(\alpha_s^2)$ terms (Be

(Beneke, Czakon, Falgari, Mitov, CS 09 Implemented in HATHOR, Aliev et.al. 10)

Pure soft corrections:

(also Moch/Uwer+Langenfeld (08/09))

$$\Delta \sigma_{s}^{(2)} \sim \alpha_{s}^{2} (c_{LL}^{(2)} \ln^{4} \beta + c_{NLL}^{(2)} \ln^{3} \beta + c_{NNLL,2}^{(2)} \ln^{2} \beta + \underbrace{c_{NNLL,1}^{(2)} \ln \beta}_{2\text{-loop } \gamma_{H,s}}$$
Potential corrections: 2nd Coulomb, NLO potentials
$$\Delta \sigma_{p}^{(2)} \sim \alpha_{s}^{2} \left(\frac{c_{C^{2}}}{\beta^{2}} + \frac{1}{\beta} (c_{C,0}^{(2)} + c_{C,1}^{(2)} \log \beta) + \underbrace{c_{n-C}^{(2)} \ln \beta}_{\text{spin-dependent}} \right)$$
spin-dependent
(using Beneke, Signer, Smirnov 99, Czarnecki/Melnikov 97/01)
mixed Coulomb/soft, hard corrections:
$$\Delta \sigma_{p\otimes sh}^{(2)} \sim \sim \frac{\alpha_{s}}{\beta} \alpha_{s} (c_{LL}^{(1)} \ln \beta^{2} + c_{NLL}^{(1)} \ln \beta + c + \underbrace{H^{(1)}}_{\text{process dependent}} \right)$$

$\sigma_{t\bar{t}}(pb)$	Tevatron	LHC7	LHC10	LHC14
NLO	$6.50^{+0.32+0.33}_{-0.70-0.24}$	150^{+18+8}_{-19-8}	380^{+44+17}_{-46-17}	842^{+97+30}_{-97-32}
NLO+NLL	$6.57^{+0.52+0.33}_{-0.30-0.24}$	151^{+23+8}_{-12-9}	382^{+60+17}_{-32-18}	$848^{+136+30}_{-75-32}$
NLO+NNLL	$6.77^{+0.27+0.35}_{-0.48-0.25}$	155^{+4+8}_{-9-9}	390^{+14+17}_{-26-18}	858_{-64-33}^{+35+31}
$NNLO_{\mathrm{app}}(\beta)$	$7.10^{+0.0+0.36}_{-0.26,-0.26}$	162^{+2+9}_{-3-9}	407^{+9+17}_{-5-18}	895^{+24+31}_{-6-33}
$NNLO_{\mathrm{app}}(\beta) + NNLL$	$7.13^{+0.22+0.36}_{-0.24-0.26}$	162^{+4+9}_{-1-9}	$405{}^{+14+17}_{-2-18}$	892^{+38+31}_{-3-33}
$NNLO_{app}(\beta) + NNLL+BS$	$7.14^{+0.14+0.36}_{-0.22-0.26}$	162^{+4+9}_{-1-9}	407^{+14+17}_{-2-18}	896^{+38+31}_{-3-33}
$m_t = 173.1$ GeV, $ ilde{\mu}_f = mt$, M	STW08NNLO)	(Beneke, Fa	algari, Klein, CS	preliminary)

- Resummation in momentum space using fixed μ_s from minimising $\Delta \sigma_{\text{soft}}^{\text{NLO}}(\mu_s)$ $\Rightarrow \tilde{\mu}_s = 85/146 \text{ GeV}$ for Tevatron/LHC7: no big scale hierarchy
- vary μ_s , μ_h , μ_f from $0.5\tilde{\mu} < \mu < 2\tilde{\mu}$, add uncertainties in quadrature
- (N)NLL includes (N)LO Coulomb resummation
- BS: include bound-state contributions below threshold
- Preliminary estimate of uncertianty from $\alpha_s^2 C^{(2)}$ terms: ~ 3%

Alternative threshold expansions

Pair invariant mass cross sections (Kidonakis, Sterman 97, Ahrens et.al. 10)

$$\frac{d\sigma(t\bar{t})}{dM_{t\bar{t}}} \quad \Rightarrow \left[\frac{\log^n(1-z)}{1-z}\right]_+ \ , \ z = \frac{M_{t\bar{t}}^2}{\hat{s}}$$

One particle inclusive cross sections: (Laenen, Oderda, Sterman 98)

$$\frac{d\sigma(t+X)}{ds_4} \quad \Rightarrow \left[\frac{\log^n\left(s_4/m^2\right)}{s_4}\right] \quad , \ s_4 = p_X^2 - m_t^2$$

$\sigma_{t\bar{t}}(pb)$	Tevatron	LHC7	LHC10	LHC14
NLO	$6.50^{+0.32+0.33}_{-0.70-0.24}$	150^{+18+8}_{-19-8}	380^{+44+17}_{-46-17}	842^{+97+30}_{-97-32}
$NNLO_{\mathrm{app}}(\beta)$	$7.10^{+0.0+0.36}_{-0.26,-0.26}$	162^{+2+9}_{-3-9}	407^{+9+17}_{-5-18}	895^{+24+31}_{-6-33}
$NLO + NNLL(M_{t\bar{t}})$ (Ahrens et.al. 10)	$6.48^{+0.17+0.32}_{-0.21-0.25}$	146^{+7+8}_{-7-8}	368^{+20+19}_{-14-15}	813^{+50+30}_{-36-35}
$NNLO_{app}(s_4)$ (mt=173; Kidonakis 10)	$7.08^{+0.00+0.36}_{-0.24-0.27}$	163^{+7+9}_{-5-9}	415^{+17+18}_{-21-19}	920^{+50+33}_{-39-35}
		$(m_t =$	= 173.1 GeV, μ_f =	= mt, MSTW08NNLO)

C. Schwinn

Threshold resummation for top Helmholtz Workshop Dresden

Squark -antisquarks at LHC

• Two production channels:

$$q_i \bar{q}_j \to \tilde{q}_k \overline{\tilde{q}_l} \quad , \qquad gg \to \tilde{q}_k \overline{\tilde{q}_l}$$

- Simplified setup: equal squark masses, no stop
- Matching to NLO result

NLL: full Coulomb \otimes res. soft

noBS:

NLL without bound states

NLL_{s+h}:

resummation of H and W

C: Coulomb resummation

(Beenakker et.al. 96, PROSPINO)

10

Scale uncertainty reduced by combined resummation

NLO
$$\frac{m_{\tilde{q}}}{2} < \mu_f < m_{\tilde{q}}$$

NLL: vary all scales $\frac{\tilde{\mu}_i}{2} < \mu_i < 2\tilde{\mu}_i$, add in quadrature

 \Rightarrow significant reduction for combined resummation!

Threshold corrections $\sim \log^n \beta$, $\frac{1}{\beta^n}$

- Factorization of soft and Coulomb corrections
- $\log \beta$ resummation from momentum space solution to RGEs
- combined Soft and Coulomb resummation possible
- theoretical progress: now NNLL resummation feasible

Threshold expansion to $\mathcal{O}(\alpha_s^2)$ of $t\bar{t}$ cross section

NNLL resummation for $t\bar{t}$

- \bullet dominant higher-order corrections included in $\mathsf{NNLO}_{\mathrm{approx}}$
- discrepancy to NNLL from integrated $\frac{d\sigma}{dM_{tt}^2}$? (Ahrens et.al. 10)

Squark-antisquark production

- total corrections 4 10% for $m_{\tilde{q}} = 300$ GeV-2 TeV
- reduced μ_f -dependence for combined soft/gluon resummation

Bonus slides

Hadron collider cross sections from QCD factorization

(Collins, Soper, Sterman)

$$\sigma_{NN'}(s) = \sum_{pp'} \int dx_1 dx_2 \;\; f_{N/p}(x_1,\mu_f) f_{N'/p'}(x_2,\mu_f) \; \hat{\sigma}_{pp'}(sx_1x_2,\mu_f)$$

- $\hat{\sigma}_{pp'}$: partonic cross section: compute in perturbation theory
- $f_{p/N}(x)$: Parton distribution function for parton p in hadron N: fitted to experiment

PDF uncertainties for top: (e.g. Guffanti/Rojo arXiv:1008.4671 [hep-ph])

	CTEQ6.6	MSTW2008	NNPDF2.0	ABKM09	HERAPDF1.0
$\sigma_{t\bar{t}}^{NLO}(7TeV)[pb]$	147.7 ± 6.4	159.0 ± 4.7	160.0 ± 5.9	131.9 ± 4.8	136.4 ± 4.7

- Different α_s values
- Differences in gluon pdf at large x (impact of Tevatron jet-data)

Choice of scales for resummation in momentum space

Soft scale $\tilde{\mu}_s$ that minimizes hadronic $\Delta \sigma_{\text{soft}}^{\text{NLO}}$ (Becher, Neubert, Xu 07) $\tilde{\mu}_s/m_{\tilde{q}} \approx 0.5 \dots 0.2$ for $m_{\tilde{q}} = 0.5, \dots 2$ TeV

Hard scale: $\tilde{\mu}_h = 2m_{\tilde{q}}$

Dependence on scale choices:

 $(\sqrt{s} = 14 \text{ TeV}, m_{\tilde{g}}/m_{\tilde{q}} = 1.25)$

Coulomb scale: $\mu_C = \max\{2m_{\tilde{q}}\beta, C_Fm_{\tilde{q}}\alpha_s(\mu_C)\}$

Comparison to Mellin-approach: (Kulesza, Motyka 08/09, Beenakker et.al. 09)

Good agreement for appropriate choice of scales ($\mu_h = \mu_f$: NLL_s):

$m_{ ilde{q}}$ [GeV]	NLO[pb]	NLL _{Mellin} [pb]	NLL _s [pb]	NLL [pb]
200	1.3×10^3	1.31×10^3 (1%)	1.31×10^3 (1%)	$1.34 \times 10^3 (3.4\%)$
500	$1.6 imes 10^1$	$1.61 \times 10^1 \ (1.2\%)$	$1.62 \times 10^1 \ (1.3\%)$	$1.67 imes 10^1 \; (4.2\%)$
1000	2.89×10^{-1}	$2.93 \times 10^{-1} (1.7\%)$	$2.94 \times 10^{-1} (1.7\%)$	$3.06 imes 10^{-1} (5.8\%)$
2000	1.11×10^{-3}	$1.14 \times 10^{-3} (3.4\%)$	$1.14 \times 10^{-3} (3.1\%)$	$1.24 \times 10^{-3} (11\%)$
3000	$7.13 imes 10^{-6}$	$7.59 \times 10^{-6} (6.4)\%$	$7.54 \times 10^{-6} (5.8\%)$	$8.61 imes 10^{-6} (21)\%$
(LHC 14 TeV, $m_{\tilde{g}} = m_{\tilde{q}}$)				

Potential corrections:

- 2nd Coulomb correction
- NLO Coulomb potentials:

$$\tilde{V}_{\mathrm{C}}^{(1)}(\boldsymbol{p},\boldsymbol{q}) = \frac{D_{R_{\alpha}}\alpha_{s}^{2}}{\boldsymbol{q}^{2}}\left(a_{1} - \beta_{0}\ln\frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)$$

• Non-Coulomb potential:

$$\tilde{V}_{\mathrm{nC}}^{(1)}(\boldsymbol{p},\boldsymbol{q}) = \frac{4\pi D_{R_{\alpha}}\alpha_{s}}{\boldsymbol{q}^{2}} \left[\frac{\pi\alpha_{s}|\boldsymbol{q}|}{4m} \left(\frac{D_{R_{\alpha}}}{2} + C_{A} \right) + \frac{\boldsymbol{p}^{2}}{m^{2}} + \frac{\boldsymbol{q}^{2}}{m^{2}} v_{\mathrm{spin}} \right],$$

 $(v_{spin} = 0 \text{ (singlet)}; -2/3 \text{ (triplet)})$

Corrections to cross section:

$$\Delta \hat{\sigma}_{\rm nC} = \hat{\sigma}^{(0)} \alpha_s^2 \ln \beta \left[-2D_{R_\alpha}^2 \left(1 + v_{\rm spin} \right) + D_{R_\alpha} C_A \right]$$

(extracted from Beneke, Signer, Smirnov 99, Pineda, Signer 06)