<u>Compact Muon Solenoid (CMS)</u> Muonsystem

- 1. Design considerations
- 2. Technology choice and implementation
- 3. Performance with cosmic rays
- 4. Efficiencies in collision data
- 5. Conclusions

Kerstin Hoepfner RWTH Aachen, III. Phys. Inst. A On behalf of the CMS Collaboration

The CMS Original Concept

Optimized for high p_T leptons (and γ)

- Good momentum resolution with high B-field
 - High field of B=3.8 T for better $\frac{\Delta p}{p} \sim \frac{p}{B}$ momentum resolution
 - For similar bending power solenoidal system is smaller and provides homogeneous field inside tracker
 - Solenoidals fields requires return yoke
- Excellent and redundant muon identification
 - Muon stations to be interleaved with return yoke, multiple scattering limits overall resolution
 - Four muon stations along the track
 - Redundancy in the muon system, complementary technologies

The CMS Detector

YB-1

YB-2

YB0

Pixels
Tracker
ECAL
HCAL
MUON Dets.
Superconducting Solenoid

Total weight : 12500 t Overall diameter : 15 m Overall length : 21.6 m Magnetic field : 4 Tesla

http://cms.cern.ch

YE-1 YE-2

YE-3

HF-

CMS Muon System

Muon Barrel 0 < |η| < 1.2

• 5 barrel wheels, iron return yoke for the solenoid magnet

- Almost no B-field at chamber positions
- 250 Drift Tube (DT) Chambers
- 480 Resistive Plate Chambers (RPC)

Forward Muon $0.9 < |\eta| < 2.4$

- Arranged in 2 x 3 disks
- 4 muon stations in 2/3 rings
- Inhomogenous field with B<1.2 T
- 250 Cathode Strip Chambers (CSC)
- 483 Resistive Plate Chambers (RPC)

Muon-ID By Absorption and Tracking in the Muon System Charge Curvature in B-Field, Tracker and Muon System Muon p_T Tracker (~1%) and Muon System (~10%) + Alignment ~0.5 M channels ~10,000 m² instrumented

All detectors used for triggering and reconstruction

Barrel Drift Tube Chambers (DT)

Station of type MB1,2,3

 250 chambers arranged in 5 wheels, each with 4 stations forming concentric cylinders, 172 k readout channels

CMS chambers interleaved with iron yoke

- B-field contained in the iron (B~1.9 T) except MB1 of outermost wheels
- B-field in iron for p_T measurement, track curvature flips in MB3
- Punch-through only in first station
- Cell resolution ~250 μm, station resolution ~100 μm (limited by multiple scattering)

Drift and B-Field

Br[T]

0.6

0.4

- Residual B-field changes drift velocity
- Has been measured, correction factors are calculated \rightarrow database for reconstruction
- Monitoring of the effect with calibration runs and gas mixture monitoring system

MBI MB2 MB3 MB4

Endcaps: Cathode Strip Chambers

- 468 chambers arranged in 4 disks per endcap
- Chambers composed of 6 gas gaps with a layer of staggered cathode strips and one of anode wires

- Anode wires: fast response (~4 ns) for BX ID, radial coordinate measurement
- Strips: measures bending coordinate ϕ with good spatial resolution (75 150 μ m)

Instrumented up to $|\eta|$ <2.4

Gas: Ar/CO2/CF4 (30/50/20)%

CMS RPC System

Strips: measure bending coordinate, resolution ~1cm Fast response (~2 ns) for unambiguous BX ID at level-1 • 912 chambers with ~160 k channels

• Barrel with 6 stations (for softer muons), endcap with 3 stations up to $|\eta| < 1.6$

• Double gap with single readout strip in OR

• Avalanche mode to cope with hit rate up to 1 kHz/cm²

• Gas: 96.2% C2H2F4, 3.5% Iso-Butane, 0.3% SF₆

Gas gap needs constant width. Signal in pick up electrodes

Operation and Commissioning

- Longest production time of all subsystems
 - ~ 5 years production at ~20 different sites incl. first level muon trigger
 - ~ 2 years installation and commissioning
 - ~ 1 for synchronization
- Muon system, especially barrel muon, first to be ready. Provide cosmic muon triggers for MTCC and cosmics data taking
- Continuously running since ~2008

• During pp running, efficiency >98.5%

Commissioning with Cosmic Muons and Beam Splash Events

Vertical Cosmic Muons (CRAFT)

In total ~350 million triggers Used for studies of

- **Reconstruction** (tracker, muon, global)
- Trigger performance and efficiency
- Alignment of tracker and muon system and global alignment

Horizontal Beam Splash Events

- For alignment of muon endcaps with respect to each other (cannot be done with cosmics since rate of horizontal cosmics is too low)
- Large energy deposition in calorimeters useful to study performance (although very limited statistics)

4. Annual Terascale Meeting Dresden 2010

Muon Resolution with Cosmics

Reconstruction of O(TeV) difficult, showering

Different algorithms tested and optimized

Width of R(q/pT) distribution for:

- Tracker muons: using only hits in silicon tracker, muon ID
- Global muons: combining tracker and muon hits

• Tracker plus first muon station (TPFMS): profit from long level arm tracker-muon without MS and showering in muon system

• Truncated muon reconstructor: stop when showering in muon system

30

25

20

10

Tracker-only

 $(1/p_{\mathcal{T}})_{ ext{gen}}$

(%) (%)

 $(1/p_{\mathcal{T}})_{\mathrm{gen}}$

 $(1/p_T)_{
m reco}$

Impact of Alignment

- Big progress in alignment with tracks using cosmic ray tracks
- Complementary to hardware (laser) align.
- Improves the CMS start-up conditions. After cosmics analysis better than earlier estimates for MC samples

Randomly-generated scen<mark>ario: pre-CRAFT "start-up"</mark>

Randomly-generated scenario: early 10 pb⁻¹ estimate

Result of alignment algorithms on simulated 10 pb⁻¹

Tracker with first muon station

 $Z' \rightarrow \mu\mu$ sensitive to

Global muons

Ideal geometry

400

600

800

1000

Dimuon mass (GeV/ c^2)

SBM-07-002

splitting (prev pa

 10^{3}

1200

Performance in pp Collisions

Performance in pp Collisions

Efficiencies determined with tag-and-probe in data and DY MC

Resolution in pp data for muons with p_T <100 GeV) with 40/nb of data

Tracking and Muon Performance

Summary

- After 20 years of construction, CMS has began taking collision data
- Muon system continuously operation with >98.5% efficiency
- Very useful alignment and reconstruction studies with cosmics in preparation of pp data taking
- Trigger and muon ID efficiencies ~99% in pp

... to detect beautiful events like this

CMS Muon system has been build to detect events like this..

Invariant Masses

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06), $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

Invariant Mass of 4µ: 201 GeV

ZZ →μμμμ

F