

Bilinear RPV at ATLAS and ILC

Benedikt Vormwald

University of Würzburg DESY Hamburg

4th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

Dresden

Friday, 03. December 2010

FSP 101

BMBF-Forschungsschwerpunkt ATLAS Experiment

Physics on the TeV-scale at the Large Hadron Collider

Bundesministerium für Bildung und Forschung

- 1. Bilinear R parity violation
- 2. ATLAS: LSP mass reconstruction using a pure

leptonic LSP decay channel

- 3. ILC: polarized cross sections of e+/e- collider
- 4. Conclusion/Outlook

- 1. Bilinear R parity violation
- 2. ATLAS: LSP mass reconstruction using a pure

leptonic LSP decay channel

- 3. ILC: polarized cross sections of e+/e- collider
- 4. Conclusion/Outlook

What is R parity?

- *B* and *L* violating terms allowed in superpotential (\Leftrightarrow SM)
- B and L violation never observed (proton decay)
- \rightarrow Invent new symmetry which is a combination of *B*, *L* (and *S*)

$$P_{R} = (-1)^{3B+L+2S}$$

$$\implies \text{SM particles: } P_{R} = +1$$

$$\implies \text{SUSY partners: } P_{R} = -1$$

Consequences of conservation

- proton decay prohibited
- sparticles can only be produced in pairs
- SUSY decay products contain odd number of LSPs
- LSP absolutely stable

What is R parity?

- *B* and *L* violating terms allowed in superpotential (⇔SM)
- B and L violation never observed (proton decay)
- \rightarrow Invent new symmetry which is a combination of *B*, *L* (and *S*)

Bilinear P_R violation

W. Porod et. al. arXiv:hep-ph/0011248

Superpotential

LINIVERSITÄT

WÜRZBURG

$$W = \mathcal{E}_{ab} \left(h_{U}^{ij} \hat{Q}_{i}^{a} \hat{U}_{j} \hat{H}_{u}^{b} + h_{D}^{ij} \hat{Q}_{i}^{b} \hat{D}_{j} \hat{H}_{d}^{a} + h_{E}^{ij} \hat{L}_{i}^{b} \hat{R}_{j} \hat{H}_{u}^{a} - \mu \hat{H}_{d}^{a} \hat{H}_{u}^{b} + \mathcal{E}_{i} \hat{L}_{i}^{a} \hat{H}_{u}^{b} \right)$$

MSSM superpotential

- → Higgs/Slepton-mixing
- → Sneutrinos acquire VEV $\langle \tilde{V}_i \rangle = v_i$
- \rightarrow corresponding RPV soft SUSY breaking term L_{soft}^{BRpV}

$$W = -B_i \varepsilon_{ab} \varepsilon_i \widetilde{L}_i^a H_u^b$$

bRPV term

i = 1...3

masses and mixings of neutral fermions

Basis of neutral fermions: $\psi^{0T} = (-i\lambda', -i\lambda^3, \tilde{H}_d^1, \tilde{H}_u^2, \nu_e, \nu_\mu, \nu_\tau)$

Mass terms in the Lagrangian are given by:
$$L_m = -\frac{1}{2} (\psi^0)^T \mathbf{M}_N \psi^0 + h.c.$$

$$4x4 \text{ MSSM neutralino} \qquad \mathbf{M}_N = \begin{pmatrix} M_{\chi^0} & m^T \\ m \leftarrow 0 \end{pmatrix} \qquad 4x3 \text{ RPV matrix}$$

W. Porod et. al. arXiv:hep-ph/0011248

Approximate diagonalization of $\,M_{_{\rm N}}$

WÜRZBURG

$$\mathbf{M}_{\mathbf{N}} = \begin{pmatrix} M_{\chi^0} & m^T \\ m & 0 \end{pmatrix}$$

 $\mathbf{M}_{\mathbf{N}}$ can be block-diagonalized for small RPV parameters via the Seesawlike diagonalization: $\mathbf{M}_{\mathbf{N}} = diag(M_{\chi^0}, m_{eff})$

$$m_{eff} = -mM_{\chi^0}m^T = \frac{M_1g^2 + M_2g'^2}{4\det M_{\chi^0}} \begin{pmatrix} \Lambda_e^2 & \Lambda_e\Lambda_\mu & \Lambda_e\Lambda_\tau \\ \Lambda_\mu\Lambda_e & \Lambda_\mu^2 & \Lambda_\mu\Lambda_\tau \\ \Lambda_\tau\Lambda_e & \Lambda_\tau\Lambda_\mu & \Lambda_\tau^2 \end{pmatrix}$$

where $\Lambda_i = \mathcal{E}_i v_d + \mu v_i$ "alignment parameters"

A final diagonalization of M_{χ^0} leads to the neutralino masses $m_{\chi^0_i}$ and a diagonalization of m_{eff} leads to one tree level neutrino mass.

W. Porod et. al. arXiv:hep-ph/0011248

Some results of this model

WÜRZBURG

- largest neutrino mass at tree level
- 2 mixing angles at tree level
- remaining masses/angles at 1-loop-level
- correct scales of mass differences Δm_{ii}^2

$$m_{v} = \frac{M_{1}g^{2} + M_{2}g^{\prime 2}}{4 \det M_{\chi^{0}}} \left|\vec{\Lambda}\right|^{2}$$

$$\tan \theta_{23} = \frac{\Lambda_{\mu}}{\Lambda_{\tau}} \qquad \tan \theta_{13} = -\frac{\Lambda_{e}}{\sqrt{\Lambda_{\mu}^{2} + \Lambda_{\tau}^{2}}}$$

How is that connected to colliders?

dominant part of $\widetilde{\chi}_1^0 - W - l_i$ coupling: $O_i^L = \Lambda_i \cdot f(M_1, M_2, \mu, \tan \beta, v_d, v_u) \propto \Lambda_i$

$$\tan^2 \theta_{23} = \left| \frac{\Lambda_{\mu}}{\Lambda_{\tau}} \right|^2 \cong \frac{BR(\tilde{\chi}_1^0 \to \mu W)}{BR(\tilde{\chi}_1^0 \to \tau W)}$$

\rightarrow Neutrino physics at collider experiments

- 1. Bilinear R parity violation
- 2. ATLAS: LSP mass reconstruction using a

pure leptonic LSP decay channel

- 3. ILC: polarized cross sections of e+/e- collider
- 4. Conclusion/Outlook

(Semi-)leptonic LSP decay channels (@ATLAS benchmark point SU3)

(data created with Spheno3.0beta36)

Why muon channel?

- \rightarrow ATLAS has a very good muon spectrometer!
- \rightarrow Working group is interested in muons

Group in Valencia working on $\widetilde{\chi}_1^0 \rightarrow W \mu$ (CERN-ATL-COM-PHYS-2009-543)

Standard model backgrounds:

- ttbar
- single top

Julius-Maximilians-

WÜRZBURG

• W+jets

- Z+jetsWW+WZ+ZZ
- QCD dijets

(officially produced Monte Carlo samples, CM=10TeV)

Reasonable Triggers

Signal final state signature : mu, tau, missing E _⊤			mu10	tau20i	tau20i_mu10
Trigger	Signal eff.	BG ef	f.	mu10	BG eff.
mu10	0.58	4.15 10	D ⁻⁵	QCD dijets	4.1 10 ⁻⁵
tau20i	0.65	8.81 10)-4	W+jets	0.29
tau20i_mu10	0.38	1.35 10 ⁻⁶		Z+jets	0.43
\rightarrow trigger mu10 chosen				ttbar	0.36
\rightarrow available in L31 trigger menu				single top	0.30
\rightarrow very good background reduction				WW+WZ+ZZ	0.39

SM background reduction

Observables

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Number of mu/tau

Asking for at least one muon and one tau in final state is very selective!

SM background reduction

Observables

Julius-Maximilians-

WÜRZBURG

SM background reduction

	loose	medium	tight
# events SUSY	1913	1339	727
# events BG	1493	160	54
S/B	1.3	8.4	13.4
S/√B	49.5	106.0	98.6

Julius-Maximilians-

WÜRZBURG

→ very good background reduction! → medium cuts are used

Signal channel/ SUSY background

WÜRZBURG

Signal channel/ SUSY background

<u>1. ΔR_{ut} cut for different μτ-pairs (truth)</u>

ulius-Maximilians

UNIVERSITÄT WÜRZBURG

 \rightarrow resonable cut: $\Delta R_{\mu\tau}$ < 1.2 (χ decay products boosted)

Signal channel/ SUSY background

WÜRZBURG

Signal channel/ SUSY background

Julius-Maximilians

WÜRZBURG

Invariant mass of μ and τ after $\Delta R_{\mu\tau}$ cut and OS-SS subtraction (reco)

- 1. Bilinear R parity violation
- 2. ATLAS: LSP mass reconstruction using a pure

leptonic LSP decay channel

- 3. ILC: polarized cross sections of e+/e- collider
- 4. Conclusion/Outlook

ILC potential

Production cross section

ILC potential

Production cross section

Most important decay channels of LSP (@SPS1a')

LSP decay	Branching ratio	
Wμ	0.034	
Wт	0.031	
v ₂ b b	0.035	
v ₁ т е	0.159	
ν ₁ τ μ	0.279	
v ₁ т т	0.453	

Decay width of LSP

 $\overline{\Gamma} = 3.77 \cdot 10^{-13} \text{ GeV} \rightarrow \overline{I} \approx 523 \, \mu\text{m}$

Analysis strategy

Looking for: - LFV signal

- two displaced vertices per event (+cascade products from IP)
- high effective mass per event

Study neutrino parameters

neutrino mixing, ...

Study LSP parameters

mass (endpoint), mixing character, ...

Displaced vertices expected!

Statistical uncertainties on θ_{atm}

Julius-Maximilians

WÜRZBURG

 $\int L dt = 500 \text{ fb}^{-1}$ (4 years of ILC running) $\sigma_{+-}(500 \text{GeV}) = 2200 \text{ fb}$ Detection efficiency = 0.5

Signal/background estimation

- tree level cross sections for SM BG (Whizard 2.0; arXiv:0708.4233)

- just looking for similar final states for example:

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow (\nu\tau\tau)(\nu\tau\mu)$$
$$e^{+}e^{-} \rightarrow SM \rightarrow \tau\tau\tau\nu\mu\nu$$
$$= 3\tau + 1\mu + \text{MET}$$

$$→ N_{W\mu} = 37500 \cdot 0.5 = 18750 \quad \sigma_{rel}^{stat} = 0.74\%
→ N_{W\tau} = 34100 \cdot 0.5 = 17050 \quad \sigma_{rel}^{stat} = 0.77\%
\sigma_{rel}^{stat} (Br(χ→Wµ)/Br(χ→WT)) ≈ 1%
→ θ_{atm} = (46.36+-0.15)^{\circ}$$

→ Comparable results for almost all LSP decay channels (at least S/sqrt(B) > 10)

- 1. Bilinear R parity violation
- 2. ATLAS: LSP mass reconstruction using a pure

leptonic LSP decay channel

- 3. ILC: polarized cross sections of e+/e- collider
- 4. Conclusion/Outlook

UNIVERSITÄT WÜRZBURG

Conclusion/Outlook

Conclusion

- bRPV enables access to neutrino physics at the collider
- ATLAS detector simulation:
 - RPV signal should be observable
 - dilepton edge can be used to determine the mass of neutralino (ATLAS)
 - Analysis should be redone at sqrt(s)=7 TeV (ATLAS)
- ILC case:
 - Polarisation is a very useful tool to increase signal over background (ILC)
 - ILC is highly capable to look at that kind of models

Outlook

- Implementation of bRPV in Whizard using FeynRules on the way
- Detailed ILC study in progress

Thank you for your attention!

References

Romao: *Testing Neutrino Parameters at Future Accelerators*. arXiv:hep-ph/0211276v1

Hirsch, Díaz, Porod, Romae, Valle: Neutrino Masses an Mixings from Supersymmetry with Bilinear R-Parity Violation: A Theory for Solar and Atmospheric Neutrino Oscillations. arXiv:hep-ph/0004115v2

Torro, Mitsou, Garcia: Probing Bilinear R-Parity Violating Supersymmetry in the Muon plus Jets Channel. ATL-COM-PHYS-2009-543

ATLAS Collaboration: ATLAS CSC Note. Supersymmetry Searches with ATLAS

Backup Slides

Bilinear P_R violation

Phenomenology 🔅

W. Porod et. al. arXiv:hep-ph/0011248 $b)_L$ a) Δm_{atm}^2 $(\tilde{\chi}_1^0)$ [cm] 100 10⁻¹ 10⁻² 10⁻³ 0.1 10⁻⁴ 0.01 1.5 3 250 2 50 100 150 200 5 $10^5 |\vec{\Lambda}|/(\sqrt{M_2}\mu) \ [GeV]$ $m_{\tilde{\chi}_1^0}$ [GeV]

Figure 4: a) Δm_{atm}^2 and b) neutralino decay length.

Phenomenology 🔅

Benchmark scenarios

<u>mSUGRA</u>

Phenomenology

Benchmark scenarios

SUSY benchmark points

Special benchmark points for ATLAS:

Name	т ₀ [GeV]	М _{1/2} [GeV]	Α ₀ [GeV]	tan β	sgn µ	Characteristics
SU1	70	350	0	10	+	Coanihilation region
SU2	3550	300	0	10	+	Focus point region
SU3	100	300	-300	6	+	Bulk region
SU4	200	160	-400	10	+	Low mass point
SU6	320	375	0	50	+	
SU8.1	210	360	0	40	+	Funnel region
SU9	300	425	20	20	+	

(ATLAS CSC Note)

Bilinear P_R violation

Phenomenology

<u>mSUGRA</u>

Comparison of SU benchmark points for LSP decay

SU benchmark points

- → ATLAS specific mSUGRA benchmark scenarios
- \rightarrow SU3 chosen for analysis

Name	Characteristics	m _{x10} [GeV]	Decay length [µm]		
SU1	Coanihilation region	139	124		
SU2	Focus point region	120	2037		
SU3	Bulk region	118	291		
SU4	Low mass point	60	102 10 ³		
SU6		152	408		
SU8.1	Funnel region	145	314		
SU9		173	20		

Phenomenology

Phenomenology

Comparison of SU points for LSP decay

Chosen LSP-decay to investigate:

$$\widetilde{\chi}^0_1
ightarrow \mu^{\pm} + au^{\mp} +
u$$

Name	m _{x10}	Decay length [m]	BR(2BD)	BR(3BD- non/semilept.)	BR(3BD- leptonic)	BR(χ ¹⁰ -> τ τ ν)	BR(χ ¹⁰ -> μ τ ν)
SU1	139	1,2 10 ⁻⁴	0,32	0,02	0,66	0,33	0,10
SU2	120	2,0 10 ⁻³	0,85	0,09	0,06	0,01	0,01
SU3	118	2,9 10-4	0,46	0,05	0,49	0,25	0,08
SU4	60	0,1	~0	0,36	0,64	0,30	0,08
SU6	152	4,1 10-4	0,73	0,01	0,26	0,14	0,03
SU8.1	145	3,1 10-4	0,48	0,01	0,51	0,28	0,06
SU9	173	2,0 10 ⁻⁵	0,88	0,01	0,11	0,06	0,01

(data created with Spheno 3beta36, W. Porod , arXiv:hep-ph/0301101)

Experiment & Software

ATLAS detector

Experiment & Software

Software workflow

Reconstruction chain

SPheno Parameters in bRPV

9 extra parameters for bRPV

Define them explicitly

OR

Constraints:

- Successful electroweak symmetry breaking corresponds to minimization of effective potential; technically:
 3 extra tadpole equations linear in B_i
- •Results from neutrino oscillation data (2 mass differences, 3 mixing angles) fix 5 bilinear parameters (ε_i, v_i)
- Remaining parameter should be of the same order as the others

Analysis

Calculation of invariant mass of µ and T

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

Reconstruction of taus

Truth including leptonic tau decays

Object Selection

Muons:

- combined muon
- pt > 10 GeV
- $|\eta| < 2.7$
- isolation cone 0.2/ 10 GeV

Electrons:

- isEm flag: "medium"
- pt > 10 GeV
- $|\eta| < 2.5$ and $|\eta| \notin [1.37, 1.52]$

<u>Jets:</u>

- pt > 20 GeV
- |η| < 2.5

<u>Taus:</u>

- 1 / 3 tracks
- charge = ± 1
- pt > 10 GeV
- $|\eta| < 2.5$ and $|\eta| \notin [1.37, 1.52]$
- Likelihood flag: "Loose"

Overlap removal:

- remove electrons within $0.2 < \Delta R < 0.4$ to a jet
- remove jets within ΔR <0.2 to an electron
- remove jets within $\Delta R < 0.4$ to another particle

| 01.-03.12.2010 | Page 42

Inflection point method

ILC potential

Production cross section

AS and the ILC | 01.-03.12.2010 | Page 45

√s/GeV

e⁺/e⁻ cross sections

DESY

e⁺/e⁻ cross sections

