Measurement of Single Top Quark Production and Search for Resonances Decaying into Top Quark Pairs with the CMS Experiment

- Event selection
- Multivariate Analysis
- Event candidates in 2010 Dataset

- CMS PAS TOP-09-009
- Event candidate in 2010 Dataset

GEFÖRDERT VOM

Dennis Klingebiel

Physics Institute IIIA

Martin Erdmann, Robert Fischer, Rebekka Höing, Joschka Lingemann, Jan Steggemann

Physics at the Terascale, 2nd December 2010

Pre-Selection

- one triggered isolated prompt muon
 - pT > 20 GeV
 - $|\eta| < 2.1$
- di-lepton veto

Event Selection

- one triggered isolated prompt muon
 - pT > 20 GeV
 - |η| < 2.1
- di-lepton veto

- exactly 2 antikt5 Particle Flow Jets
 - pT > 30 GeV
 - |η| < 5
 - min. one tight b-tagged jet

Single Top Quark Reconstruction

- Solve neutrino z-momentum
- W boson mass constraint
 - real solutions: smaller |pz|
 - complex solution: minimally modify MEx and MEy (Julia Bauer et al.)

4

Boosted Decision Tree Analysis - Background Separation -

Discriminating Variables

- Background: flat within statistical uncertainties
- Signal distribution: constantly growing up to 1

Comparison of different Generators Madgraph, MC@NLO and Pythia

- Ttbar background flat within uncertainties
 - Madgraph interfaced to Pythia, MC@NLO to Herwig
- Spin correlations well modelled in both Madgraph and MC @ NLO samples
- Reasonable agreement in all BDT input variables

Comparison of BDT Output for Madgraph, MC@NLO, Pythia

• BDT trained on Madgraph

- → training and testing events included in this plot
- Each distribution normalized
- Pythia more peak-like
- MC@NLO slightly shifted to higher BDT output values

Modelling uncertainties are small!

Comparison of BDT Output for Madgraph and MC@NLO

- BDT trained on Madgraph
- → training and testing events included in this plot
- Each distribution normalized

- NLO events better separated
- Modelling uncertainties are small!
 - \rightarrow Not sensitive to "hidden" correlations

UNIVERSITY

Using a Kinematic fit to reconstruct Mass(ttbar): Improved linearity & Improved resolution

Event Candidate with high m(ttbar)

- First nice event candidates
- Studies on full 2010 7 TeV dataset are ongoing

RWTH Aachen Physics Institute IIIA

Martin Erdmann, Robert Fischer, Rebekka Höing, Dennis Klingebiel, Joschka Lingemann, Jan Steggemann

Backup

- High m(ttbar) Event Candidate

- Single Top t Channel -Event Candidate: Electron Channel

- Single Top t Channel -Event Candidate: Muon Channel

