

Measurement of W/Z Boson Production with Muons in CMS

Andreas Güth

Thomas Hebbeker, Carsten Magass

4th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale" Dresden

01.12.2010

GEFORDERT VOM

Bundesministerium für Bildung und Forschung

Introduction

- 2 Official CMS Results with $\mathcal{L}_{int} = 2.9 \text{ pb}^{-1}$
 - Measurement of Inclusive W/Z Cross Sections with Muons at $\sqrt{s}=7~{\rm TeV}$

3 Work in Progress with $\mathcal{L}_{int} = 32 \text{ pb}^{-1}$

- Hadronic Recoil Modeling for $W
 ightarrow \mu \nu$ Signal Shape
- W Mass Fit

4 Conclusion

• Measurement of Inclusive W/Z Cross Sections with Muons at

- Hadronic Recoil Modeling for $W \rightarrow \mu \nu$ Signal Shape
- W Mass Fit

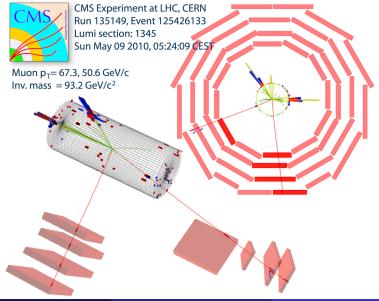
Motivation

- W/Z production are the first electroweak processes studied at the LHC.
- Clear signatures with electrons/muons. Standard candles for high-pt electron/muon reconstruction and identification.
- Test of perturbative QCD, PDFs.
- Complementary method for estimation of LHC luminosity.
- Important background in several searches.
- In the future: Precision measurements of SM parameters.

Soon: Publication by CMS EWK Group using $\mathcal{L}_{int} = 2.9 ~ { m pb}^{-1}$

Measurement of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV

2 Official CMS Results with $\mathcal{L}_{int} = 2.9 \ { m pb}^{-1}$

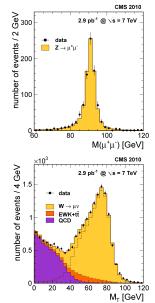

• Measurement of Inclusive W/Z Cross Sections with Muons at $\sqrt{s}=7~{\rm TeV}$

3) Work in Progress with $\mathcal{L}_{int}=$ 32 pb $^{-1}$

- Hadronic Recoil Modeling for $W
 ightarrow \mu \nu$ Signal Shape
- W Mass Fit

4 Conclusion

$Z \rightarrow \mu \mu$ Event Candidate


Selection of Muons in W/Z Analyses

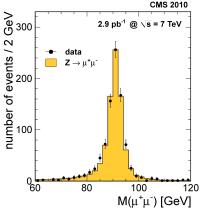
Selection

- muon trigger, threshold $p_T^{\mu} > 9$ GeV
- muon with $p_T^\mu > 20$ GeV, $|\eta|^\mu < 2.1$
- muon reconstructed in both tracker and muon system
- muon quality cuts
 - sufficient/good p_T determination at trigger/reconstruction step
 - reject fakes and meson decays in flight
 - reject cosmics
- isolation requirement

$$\left(\sum_{Tk} p_T + \sum_{ECAL} E_T + \sum_{HCAL} E_T\right)/p_T^{\mu} < 0.15$$

Conservative set of cuts.

Ingredients for Cross Section Measurement


Masterformula for Experimentalists $\sigma_{V} \cdot BR(V \rightarrow l_{1}l_{2}) = \frac{(N_{sel} - N_{bg})}{A \in \mathcal{L}_{int}}$

- Acceptance A determined from MC simulation.
- Luminosity from Lumi Group, dominant uncertainty $\frac{\sigma_{\mathcal{L}}}{\mathcal{L}} = 11\%$.
- Efficiencies ε_x determined on data: Tag and Probe.
 Simultaneous fit to mutually exclusive Z event categories.
 Z signal yield and efficiencies determined in one fit.
- MC efficiencies corrected with data-driven result:

$$\epsilon_{x} = \epsilon_{x}^{MC} \cdot \frac{\epsilon_{x}^{T\&P}(\mathsf{data})}{\epsilon_{x}^{T\&P}(\mathsf{MC})}$$

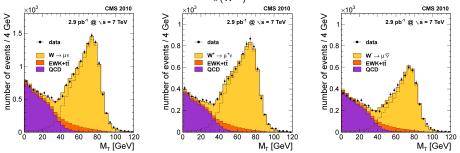
Overall correction:
$$\frac{\epsilon^{T\&P}(\text{data})}{\epsilon^{T\&P}(\text{MC})} = 0.933 \pm 0.012$$

$Z \rightarrow \mu \mu$: Cross Section Result

- Both muons carry opposite charge, 60 GeV $< M_{\mu\mu} < 120$ GeV.
- 913 events selected in 2.9 pb^{-1} .
- Expected background < 0.5%.
- Muon momentum scale well calibrated. Effects on momentum scale < 0.4%.
- Theoretical uncertainties dominate systematics (w/o luminosity).

Cross Section (60 GeV $< M_{\mu\mu} < 120$ GeV) FEWZ: 0.97 \pm 0.04 nb $\sigma_{Z/\gamma^*} \cdot BR(Z \rightarrow \mu\mu) = 0.924 \pm 0.031(\text{stat.}) \pm 0.022(\text{syst.}) \pm 0.102(\text{lumi.})$ nb

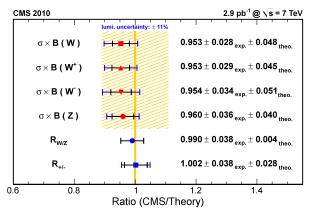
$W \rightarrow \mu \nu$ Event Candidate


CMS Experiment at LHC, CERN Run 133875, Event 1228182 Lumi section: 16 Sat Apr 24 2010, 09:08:46 CEST

Muon $p_T = 38.7 \text{ GeV/c}$ ME_T = 37.9 GeV M_T = 75.3 GeV/c²

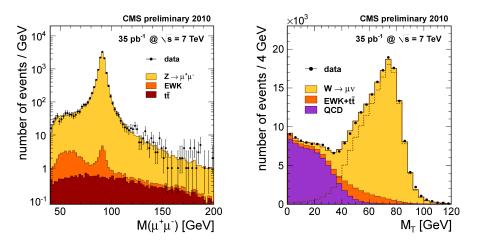
Andreas Güth (RWTH Aachen)

$W \rightarrow \mu \nu$: Cross Section Result


Asymmetric production of W^+/W^- : $\frac{\sigma(W^+)}{\sigma(W^-)} = 1.433 \pm 0.026 (\text{stat.}) \pm 0.054 (\text{syst.}).$

- Cross sections from fits to M_T with an EWK template (MC, corrected), scaling with N_W , and the QCD template (data), scaling with N_{QCD} .
- Recoil modeling used to improve signal MC shape (see below).

 $W \rightarrow \mu\nu \text{ Cross Section Result} \quad \text{FEWZ: } 10.44 \pm 0.52 \text{ nb (FEWZ)}$ $\sigma_W \cdot \text{BR}(W \rightarrow \mu\nu) = 9.922 \pm 0.090(\text{stat.}) \pm 0.307(\text{syst.}) \pm 1.091(\text{lumi.}) \text{ nb}$ Andreas Güth (RWTH Aachen) W/Z with Muons in CMS 01.12.2010 11 / 29 Measurements in electron/muon channels are consistent.



Experimental uncertainties on cross sections smaller than theoretical ones. Systematics start to dominate experimental uncertainty.

Andreas Güth (RWTH Aachen)

W/Z with Muons in CMS

Preliminary Plots with 35 pb^{-1}

Still good agreement between the data and data-driven templates/MC.

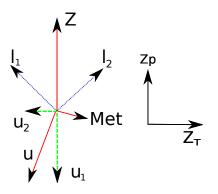
• Measurement of Inclusive W/Z Cross Sections with Muons at

3 Work in Progress with $\mathcal{L}_{int} = 32 \text{ pb}^{-1}$

- Hadronic Recoil Modeling for $W \rightarrow \mu \nu$ Signal Shape
- W Mass Fit

Hadronic Recoil in W/Z Production

Hadronic Recoil $ec{U}$


Vector sum of transverse components of had. objects (calorimetry).

Hard interaction: W/Z production Recoil balances the W/Z p_T : $\vec{p}_T^V + \vec{U} = -\vec{E_T}$

Two contributions to had. recoil:

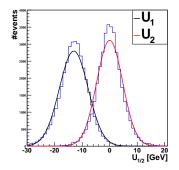
- vector boson related: soft radiation (unclustered energy), hard radiation (jets)
- underlying event, pile-up

Reference frame used:

Recoil split into components u_1 and u_2 parallel and perpendicular to vector boson.

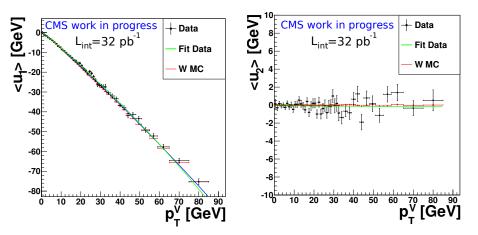
Model/expectation in small p_T^{boson} range:

$$U_1 = gauss(\langle U_1 \rangle (p_T^{boson}), \sigma_{U_1}(p_T^{boson}))$$


 $U_2 = gauss(0, \sigma_{U_2}(p_T^{boson}))$

Workflow:

- select Z events on data

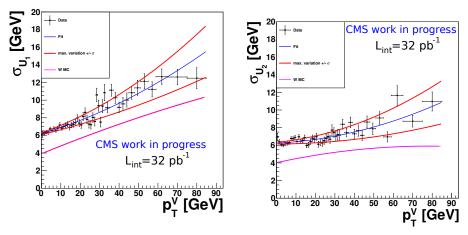

 - get U_1 and U_2 binned in p_T^Z
 - fit gaussian \rightarrow mean, width
 - \bullet compare model in W and Z $MC \rightarrow$ agreement
- \bullet sample recoil from Z(data) into W(MC) \to corrections to $\not\!\!\! E_{\mathcal{T}}$

MC: 15 GeV $< p_T^W < 16$ GeV

Recoil Modeling Results (1): Response

Mean $\langle U_1 \rangle$, $\langle U_2 \rangle$ related to calorimetric **response**.

Calorimetric response well modeled. Quadratic fit used to extract U_1 . Response perpendicular to vector boson independent of p_T^V .

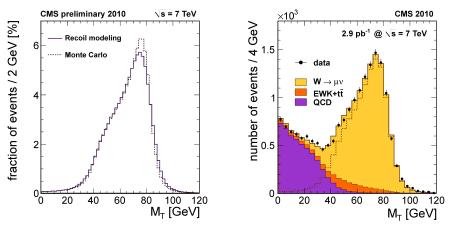

Andreas Güth (RWTH Aachen)

W/Z with Muons in CMS

01.12.2010 17 / 29

Recoil Modeling Results (2): Resolution

Width σ_{U_1} , σ_{U_2} related to calorimetric **resolution**.



Correction on calorimetric resolution. No pile-up simulated in MC used. σ_{U_1} shows stronger p_T^V dependence than σ_{U_2} .

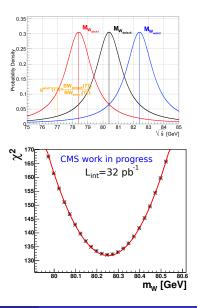
Andreas Güth (RWTH Aachen)

W/Z with Muons in CMS

Comparison of W MC before/after recoil correction for $\mathcal{L}_{int} = 2.9 \text{ pb}^{-1}$.

Effect of recoil correction on the W cross section is 0.4%.

W Mass Fit - Private Work in Progress


 W MC templates for different m^{wish}_W. Generate distributions for new mass m^{wish}_W with event weight g:

$$g = \frac{(m_{inv}^2 - m_{default}^2)^2 - \Gamma_W^2 m_{default}^2}{(m_{inv}^2 - m_{wish}^2)^2 - \Gamma_W^2 m_{wish}^2}$$

- Fit QCD/EWK templates to data. N_{QCD} fixed, N_{EWK} fit parameter. Range: 50 GeV $< M_T < 100$ GeV.
- Extract χ^2 for each mass m_W^{wish} .

Fit Result

$$m_W^{fit} = 80.25 \pm 0.05 \text{ (stat.) GeV} \pm 0.19 \text{ (recoil) GeV} \pm \dots$$

Not a measurement.

Andreas Güth (RWTH Aachen)

Influence of Recoil Model on W Mass Fit

Binned likelihood fit used. Uncorrected W MC template: $m_W^{fit} = 81.07$ GeV.

recoil as shown above

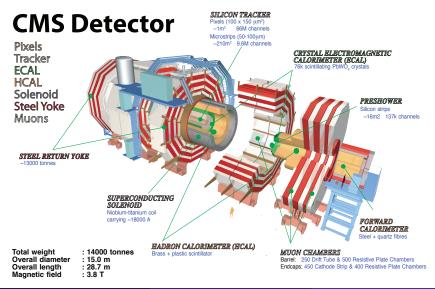
recoil resolution varied down $-\sigma$

Slightly overestimating the width of had. recoil with current model.

• Measurement of Inclusive W/Z Cross Sections with Muons at

- Hadronic Recoil Modeling for $W \rightarrow \mu \nu$ Signal Shape
- W Mass Fit

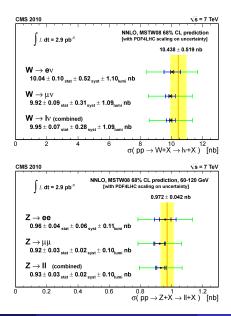
Conclusion


W/Z Cross Section Measurement

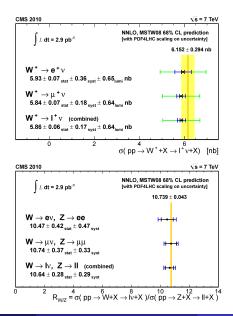
- Measured W/Z cross sections (ratios) in good agreement with theory.
- Systematics start to dominate the experimental uncertainty.
- $\bullet\,$ Many systematics are of statistical nature \rightarrow systematics decreasing.
- Plans to normalize the luminosity at the 5% level using W/Z cross sections.
- Agreement between data and simulation illustrates good understanding of the detector, reconstruction and analysis methods after 1 year of running.
- Fit to W mass gives an idea that there is still a long way to go.

Thank you for your attention.

Backup


CMS Detector

Andreas Güth (RWTH Aachen)

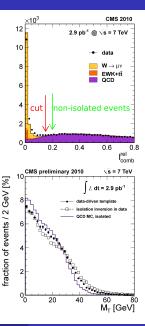

W/Z with Muons in CMS

Results (1): W/Z Cross Sections

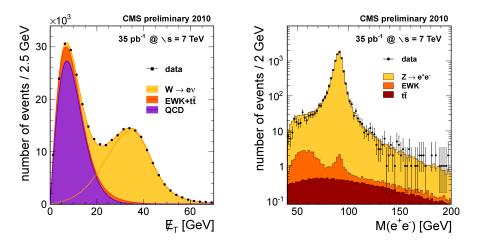
Andreas Güth (RWTH Aachen)

Results (2): W^+ Cross Sections, W/Z Ratio

Andreas Güth (RWTH Aachen)


W/Z with Muons in CMS

QCD from Data


W cross-section determination: Fit to M_T .

- Multi-jet events dominant background in $W \rightarrow \mu \nu$ analysis.
- QCD M_T template for fits extrapolated from the non-isolated region.
- *∉*_T, *p*^µ_T, isolation *I^{rel}* in QCD events correlated with ∑ *E*_T.
- Correlation $\rho\left(M_T, I^{rel}\right) \approx 0.05$.
- Templates corrected for correlation.

Template twisted wrt MC. $\Rightarrow 2\%$ effect on cross section, taken into account as systematic uncertainty.

Plots with Electrons for $\mathcal{L}_{int} = 35 \text{ pb}^{-1}$

