Status and Prospects of LHC Experiments Physics Results

Gregor Herten

University of Freiburg

HGF Alliance "Terascale"

Dresden, I. Dec. 2010

Outline

- I. Luminosity and Detector Performance
- 2. Heavy Ion Physics
- 3. Soft QCD
- 4. Exclusive Hadron Decays
- 5. Jets
- 6. Electroweak and Top Physics
- 7. Search for New Particles

Remark:

Material is taken from published results and LHCC presentation (17. Nov. 2010.)

Luminosity

24 out of 48 pb⁻¹ delivered in one week of pp running!

Peak L of 2.1x10³² cm⁻²s⁻¹; Max. average 4 interactions per BC

Error of luminosity measurement: 11% already dominating error for many cross section measurements.

In Heavy Ion Run: Total luminosity now about 7 µb⁻¹; Cross section 8 barn.

Data Taking Efficiencies

Example: LHCb

Efficiencies close to 100%

The other LHC experiments have similar detector efficiencies: > 90% for all sub-detectors.

Computing: GRID Jobs (Example ATLAS)

More then 1000 users. Huge increase of number of jobs. Higher than expected network traffic.

ALICE Pb-Pb Collisions : Particle ID

LHCb Di-Muons

Detector Performance: ATLAS Transverse Missing Energy

 E_T^{miss} distribution for events with e or μ with p_T >20 GeV

N N H H H

Heavy Ion Physics: ALICE event

Multiplicities of several 1000 observed, highest about 10 000 tracks (ATLAS)

Gregor Herten 2 Heavy Ion Physics

- Increase by factor 1.9 wrt pp at same energy
- Increase by factor 2.2 wrt RHIC Au-Au 200 GeV
- Extrapolation based on RHIC data and limiting fragm. underpredicts
- pQCD-inspired MCs (Hijing, DPMJet) consistent with data
- Some of the models based on initial state saturation underpredict

Heavy Ion Physics: ATLAS Jet Quenching

One expects that quarks loose energy in dense colored quark gluon plasma (jet quenching). 2-jet events at edge of QGP: Expect high pt-jet on one side and broad low pt-jet on other side. Au+Au p+p

Trigger jet

Lost energy of away-side jet is redistributed to angles away from 180° and low transverse momenta $p_T < 2$ GeV/c

Away-side jet

QGP

ATLAS: Observation of Asymmetric Jets

Many events with asymmetric di-jets are observed. By selecting only high pt-tracks one can observe high pt-jet and broad low-pt jet on opposite side.

ATLAS: Observation of Asymmetric Jets

ATLAS: Observation of Asymmetric Jets

Peripheral collisions (left): agreement with HIJING (contains no jet quenching) Central collisions (right): strong jet quenching (large asymmetry) observed

Pn: Probability to find n primary charged particles in a min. bias event.

NSD: Non Single Diffractive Events

16

Mean charged hadron multiplicity.

ATLAS: Minimum Bias - Charged particle multiplicity

Soft QCD: Long Range Two-Particle Correlations

Two-particle correlation functions

Ecms = 7 TeV

Same side correlations (ridge structure) observed for high multiplicity events at $\Delta \phi \simeq 0$.

Most evident in the intermediate pt range.

Observed structure resembles features seen in Heavy Ion collisions.

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

LHCb: Exclusive B Decays

Jets Jets Jets

Highest pT jet event

p_T jet1=1.3 TeV (also p_T jet2=1.2 TeV, m_{jj} =2.6 TeV)

Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

Uncertainty dominated by Jet Energy Scale (at present ~7%)

e or μ with p_T>20 GeV, E_T^{miss}>25GeV

MC normalised to data

119k electron and 135k muon candidates

Distribution of number of jets in selected W events.

Stat errors only, with ALPGEN MC normalised to data

W cross section

Electroweak: Z & W cross sections

Z and W cross sections and ratios

- Complete set of ingredients to investigate production of ttbar, which is the next step in verifying the SM at the LHC:
 - e, μ , E_T^{miss} , jets, b-tag
- Assume all tops decay to Wb: event topology then depends on the two W decays.
- Of interest:
 - lepton (e or μ), E_T^{miss}, jjbb (37.9%)
 - dilepton (ee, $\mu\mu$ or $e\mu$), E_T^{miss}, bb (6.46%)

- Data-driven methods to control QCD and W+jets backgrounds
- Counting experiment, with simultaneous likelihood fit to all channels to derive the combined cross section.

Тор

Full selection applied: Z-Veto, |M(II)-M(Z)|>15 GeV MET >30 (20) GeV in ee,µµ, (eµ); N(jets)≥2

 $\sigma(pp \rightarrow t \bar{t}) = 194 \pm 72(stat.) \pm 24(syst.) \pm 21(lumi.) pb$

Single lepton channel

1 e or μ with p_T>20 GeV, E_T^{miss}>20 GeV, E_T^{miss}+m_T(W)>60 GeV

 N_{jets} with p_T >25 GeV, with no b-tag requirement or at least one b-tag

Signal defined to have 4 or more jets, and at least 1 b-tag

Top Production Cross Section

Combining all channels,
$$\sigma_{t\bar{t}} = 145 \pm 31^{+42}_{-27} \text{ pb}$$

Significance of ~4.8 σ w.r.t. background only hypothesis.

A beautiful ZZ event

A beautiful ZZ event

Invariant Masses

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06), $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

Invariant Mass of 4µ: 201 GeV

Leptoquark search

- Search for pair produced LQ decaying β % in $\mu\text{+jet}$

ATLAS: Dijet mass & angular distributions: 3pb⁻¹

excluded:

0.50 < m(q*) < 1.53 TeV @ 95% CL

Quark contact interactions with scale $\Lambda < 3.4$ TeV @ 95% CL

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105, 161801 with 315 nb⁻¹

Search for Quark Contact Interactions in Dijet Angular Distributions in in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Accepted by PLB

Search for decays of stopped long lived R-hadrons (gluino-meson, gluinobaryon, gluino-gluon bound states) during time intervals without LHC crossing.

CMS: Limits on Stopped Gluinos

gĩ⁰) [pb] $L dt = 10 \text{ pb}^{-1}$ 95% C.L. Limits Expected: 10 µs - 1000 s Counting Exp. $L_{inst}^{max} = 1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ Expected $\pm 1\sigma$: 10 µs - 1000 s Counting Exp. **10**⁴ Expected $\pm 2\sigma$: 10 µs - 1000 s Counting Exp. $\sqrt{s} = 7 \text{ TeV}$ Obs.: 10 µs - 1000 s Counting Exp. (EM only) $\times BR(\widetilde{g}$ Obs.: $10 \,\mu\text{s} - 1000 \,\text{s}$ Counting Exp. $m_{\widetilde{g}} - m_{\widetilde{\gamma}^0} = 100 \text{ GeV/c}^2$ Obs.: 10 µs Timing Profile 10³ $\alpha(\text{pp} \rightarrow$ 10² NLO+NLL 10 100 150 200 250 300 350 400 450 500 $m_{\tilde{a}} [GeV/c^2]$

- 2010 was a very successful year for LHC experiments
- Luminosity increased steadily up to 2 x10³² /cm² sec. Great prospects for 2011.
- All LHC experiments were able to publish results within a very short time. Detectors understood, grid computing works, good agreement between data and simulations, promising situation for future analysis.
- First physics results in all areas: soft QCD, jet physics, electroweak, top, searches and heavy ion collisions.
- LHC starts to exceed sensitivities of Tevatron experiments.
- 2011 with 1 fb⁻¹ at 7 or 8 TeV will be exciting !

<u>7 TeV, 1 fb-1</u>

129-460 GeV has >50% chance of exclusion

<u>7 TeV, 1 fb-1</u>

 $\tau\tau$, bb and $\gamma\gamma$ channels all contribute in low mass region

More integrated luminosity

5fb⁻¹ enough to close gap with LEP at 7 TeV Expected 3σ observation from 123 to 550 GeV

Higher centre-of-mass energy

- Compare integrated luminosity at 8 or 9 TeV which gives same median sensitivity as 1 fb⁻¹ at 7 TeV
- At 8 TeV, require 20% less integrated luminosity

$4 \,\mu$ mass

PAS HIG 008-3

