

Vector Bosons, Jets and soft QCD

Thorsten Kuhl, University of Wuppertal

St. Dittmaier, Th. Gehrmann, K. Rabbertz, J. Kuehn

LHC-D SM working group summary

Session I

Session overview

Session II

title	presenters	title	presenters	
Observation and Measurement of Vector Boson Production in ATLAS	GOEBEL, Martin	Jet Production Cross-Section in pp Collisions with ATLAS	RUTHMANN, Nils	17 Talks
Measurement of W and Z Boson Production with Muons in CMS	GUETH, Andreas	Inclusive Jet pT Cross Section with CMS	STOBER, Fred	8 Atlas
Cross-section Measurement for Z Production in pp Collisions at ATLAS	WOLLSTADT, Simon	Alpha_s determination via the differential 2-yet rate with ATLAS	Mr. LICHTNECKER, Markus	6 CMS 3 Theory
Measurement of Z->mumu gamma cross section with first CMS data at LHC	Mr. HINDRICHS, Otto	The automisation of the POWHEG method and its consistent combination with CKKW matching in Sherpa	SCHOENHERR, Marek	STREETY
Determination of the forward- backward asymmetry in pp> gamma*/Z+X with ATLAS	KöNIG, Sebastian	The Quark and Gluon Form Factor to Three Loops in Massless QCD	Dr. HUBER, Tobias	
Measurement of pp> Zb(b), Z > mumu at LHC with CMS	Ms. HERACLEOUS, Nata	Tuning of MinBias and the Underlying Event with ATLAS	Dr. WARSINSKY, Markus	
Measurement of Vector Boson + Jets Production with ATLAS	BLUMENSCHEIN, Ulla BIERWAGEN, Katharina	Measurement of J/Psi> mumu and Y(1S)> mumu cross	BERANEK, Sarah	CERN parking
Jet Energy Calibration with Z(> mumu) plus Jet Events in CMS	HAUTH, Thomas	Study of the Underlying Event at	SCHMITT, Christopher	ł
4-Loop anomalous dimensions	Dr. ROGAL, Mikhail	Effects of Multi-Parton- Interactions and Pile-up	SCHNEIDER, Markus	-

A lot of experimental talks using this year data set; some of them that new, that not everything could be shown.

Dezember, 3th 2010

Experimental talks concentrate on 3 Topics:

• Soft QCD (MinBias, UE, MPI)

- Jet Physics
- Vector Bosons (W/Z)

Dezember, 3th 2010

- Cross sections from fits to M_T with an EWK template (MC, corrected), scaling with N_W , and the QCD template (data), scaling with N_{QCD} .
- Recoil modeling used to improve signal MC shape (see below).

 $W \rightarrow \mu \nu$ Cross Section Result FEWZ: 10.44 \pm 0.52 nb (FEWZ) $\sigma_W \cdot BR(W \rightarrow \mu \nu) = 9.922 \pm 0.090 (stat.) \pm 0.307 (syst.) \pm 1.091 (lumi.)$ nb

Andreas Güth

0

20

40

60

80

100 120

M_T [GeV]

Forw. Elec. for Xsection/A_{fb} Zee(Atlas)

- Forwards electronen good to increase rapidity acceptace for Z bosons
- For Cross section measurement:
 - bigger acceptance
 - PDF sensitifity
- Essentiell for forward backward assymetry:
 - Big chance to get the correct direction of the quark (quark should have bigger X as anti quark)

Zbb

Analysis using 35 pb⁻¹ data

Result shortly for finalization

Dezember, 3th 2010

K. Bierwagen

Particle jet level

Detector level

Z+jet unfolding

Results will be fully corrected to particle state as well as theoretical prediction for comparison

First results: bin-to-bin, bayesian method in preparation

Z for jet response correction

Methode to get the absolut calibration of the jet energy scale Using $p_t(Z)$ to model the response of the jet

Dezember, 3th 2010

Nils Ruthmann Fred Stober

- Huge cross section \rightarrow early measurement
- Access to
 - A_s
 - PDF
 - New physics

Dezember, 3th 2010

Nils Ruthmann

• Full 2010 data set should increase range to ~ $p_T = 1500 \text{ GeV}$ 10⁴ 10⁴

Fred Stober

 Dominating error (absolute scale) will get much smaller

Paper out with $\int \mathcal{L}dt = 17 \text{nb}^{-1}$, the full 2010 sample contains $\int \mathcal{L}dt = 36pb^{-1}$

Dezember, 3th 2010

Events/GeV 10⁶

10⁴

103

10²

10

J/Ψ and Υ

କ୍<mark>ର</mark> 2200 l

Sarah Beranek

Dezember, 3th 2010

MinBias Tuning

Markus Warsinsky,

- Atlas Minimum Bias data: only corrected for detector effects
- AMBT1: Minimum Bias tune using ATLAS Minimum Bias data with reduce diffractive phase space, CDF and ATLAS UE data
- Tuning done with professor tool, Similar agreement at 900 GeV

MinBias/UE Tuning

Markus Warsinsky,

Atlas Underlying Event Tune 1 (AUET1)

- family (different PDFs) of tunes of HERWIG/JIMMY to ATLAS UE data
- includes also CDF data, but ATLAS-centric
- improvement of UE description
- more detail in ATL-PHYS-PUB-2010-014

ATLAS UE, N_{ch}/p_T^{sum} density in transverse region, $\sqrt{s} = 7$ TeV

α, with differential 2 jet rate

Markus Lichtnecker

$$D_{23} = rac{1}{N} * rac{\Delta N(Q^2)}{\Delta d_{23}} =$$

$$\frac{\Delta A(d_{23},Q^2)}{\Delta d_{23}} * \alpha_s(Q^2) + \frac{\Delta B(d_{23},Q^2)}{\Delta d_{23}} * \alpha_s^2(Q^2)$$

- Using kt algorithm an d₂₃ (swich from 3 to 2 jets)
- Fitting born and NLO part of NLOJET++ calculation

Dezember, 3th 2010

נאנ-ט: SM/QCD summary

Christopher Schmitt:

 Correction for UE effect by weighting every jet constituent

scalefactor diff, ckin100: ambt1_with_ckin20

Markus Schneider:

 Study of MPI (plot) and Pile up reduction using JVF cut

Theory: MENLOPS

inclusive)

 $\geq N_{\text{ret}} | e^{\text{ts}} \rangle / \sigma(Z i)$

10⁻²

ή.,

0.8

0.6

[4 /GeV]

MC/data ĩ.2

DØ data

POWHEG

- DØ data

POWHEG

MENLOPS (wiet)

ME+PS (3-jet) X 1.2

MENLOPS (g-jet)

ME+PS (3-jet) X 1.2

250 300 »^{1st jet} [GeV]

pT of 1st jet (constrained electrons

pT of 3rd jet (constrained electrons)

10

10

10

1.0

o.á

о.

Net

[1/GeV]

DØ data

POWHEG

3

DØ data MENLOPS (3-jet)

POWHEG

ME+PS (3-jet) X 1.2

MENLOPS (3-jet)

ME+PS (3-jet) × 1.2

- avoid double-counting by dividing phase space $\Rightarrow Q_{cut}$
- ME to describe hard radiation, PS for intrajet evolution

Multijet Merging with NLO MEs – MENLOPS

ME⊗PS works well for shapes, but needs K-factor

Inclusive jet multiplicity

pT of and jet (constrained electrons)

- POWHEG reproduces NLO cross section and shape of first emission, but additional hard jets at LL only
- MENLOPS combines ME⊗PS and POWHEG
 - \Rightarrow NLO cross accuracy in core process
 - \Rightarrow multijet observables as in ME \otimes PS

Dezember, 3th 2010

Mikhail Rogal

Self-consistent NNNLO analysis of DIS: 3-loop Wilson Coefficients and 4-loop anomalous dimensions KNOWN:

Wilson Coeff. ~ up to 3-loops for all values of spin Moch, Vermaseren, Vogt'05 Anom. dim. ~ also up to 3-loops for all values of spin Moch, Vermaseren, Vogt'04 (also some polarized results Vogt, Moch, M.R., Vermaseren'08)

- The higher loops calculations: to *decrease theoretical errors* in analysis of **DIS** (\mapsto PDF)
- to get 4-loop anomalous dimensions is enough to calculate UV part of 4-loop tadpoles
- Using the Asymptotic Expansion and the R-operation it is possible to reduce initial task by at least 1 loop
- At the moment we have program that computes some 3-loop diagrams with scalar, spinor and gluon propagators. This is a prototype of future **ZFOUR** program

Dezember, 3th 2010

Quark/Gluon Formfactor for 3 loop in massless gcd

Tobias Huber

- We computed the quark and gluon form factors to three loops in massless QCD.
- Calculation requires dedicated computer algebra tools for generation, reduction, and computation of master integrals
- Result is given as linear combination of 22 master integrals
- ${}_{igstacless}$ The three-loop result is also available through to ${\cal O}(\epsilon^2)$
- Together with O(ε⁶) of one- and O(ε⁴) of two-loop form factors, the stage is set for the four-loop calculation
- Gluon form factor
 - Higgs-production: $gg \rightarrow H$

[Dawson '91; Djouadi, Graudenz, Spira, Zerwas '91-'93] [Harlander, Kilgore' 01-'02; Catani, de Florian, Grazzini' 01] [Anastasiou, Melnikov' 02; Ravindran, Smith, van Neerven' 03] [Anastasiou, Melnikov, Petriello' 05; Moch, Vogt' 05]

- N^SLO without finite term
- $\sigma_{tot.}$ approximated to $\mathcal{O}(1\%)$ by $\sigma_{tot.}^{m_t \to \infty}$ up to $M_H \approx 2m_t$

[Krämer,Lænen,Spira '96, see also e.g. Harlander,Ozeren'09] [Pak,Rogal,Steinhauser'09; Anastasiou,Bucherer, Kunszt'09]

- LHC: 40 pb⁻¹ luminosity at 7 TeV delivered
- CMS and ATLAS: very successful data taking in 2010
 - Many SM results at 7 TeV compared to expectations, no discrepancies observed so far
 - German students heavily involved in data analysis; most talks showed their work in progress
- Spring conferences: Updates for the full data set expected

• Mein auto

Dezember, 3th 2010

Track Counting:

- Order tracks by the signed impact parameter significance $S_{d0} = d_0 / \sigma_{d0}$
- Count tracks exceeding certain threshold of S_{d0}
- Ask for minimal number of tracks with this requirement
- Essential: good description of $1^{\mbox{\scriptsize st}}$, $2^{\mbox{\scriptsize nd}}$ and $3^{\mbox{\scriptsize rd}}$ highest $S_{\mbox{\scriptsize d0}}$ distribution