First Searches for New Physics at the LHC

- Overview
- Dijet Resonances
- Dijet Angular Effects
- Multibody States

Victor Lendermann KIP, Universität Heidelberg

CMS,

Physics at the Terascale Dresden, 1–3.12.2010

ATLAS and CMS BSM Search Results 2010

Based on a few months of data taking (L $\sim 100 \text{ nb}^{-1} - 10 \text{ pb}^{-1}$)

CMS

211801
0.4439, accepted by PRL
1.5861, submitted to PRL
EXO-10-005
EXO-10-004
SUS-10-001

ATLAS

New Particles in Two-Jet Final States
Quark Contact Interactions in Dijet Angular Distributions
High-mass states with electron plus missing transverse energy
Multi-body final states at high invariant masses
Supersymmetry with missing E_T and b -jets
Background studies to searches for long-lived stopped particles
Supersymmetry with jets, missing E_{T} and one or more leptons
Supersymmetry with jets and missing E_T

PRL 105, 161801 arXiv:1009.5069, accepted by PLB ATLAS-CONF-2010-089 ATLAS-CONF-2010-088 ATLAS-CONF-2010-079 ATLAS-CONF-2010-071 ATLAS-CONF-2010-066 ATLAS-CONF-2010-065

2

ATLAS and CMS BSM Search Results 2010

Based on a few months of data taking (L $\sim 100 \text{ nb}^{-1} - 10 \text{ pb}^{-1}$)

CMS

7 contributions prepared for conferences 2010

3 results subsequently submitted for publication

ATLAS

8 contributions prepared for conferences 2010

2 results subsequently submitted for publication

This talk: results extending previous limits, or searches of new type

 \rightarrow Exotic signatures involving jets

- Dijet resonances
- Dijet angular effects
- Multi-body final states

Searches for Narrow Dijet Resonances

Generic search for resonance shape in dijet mass spectrum Typical first search: simple signal and possibly large cross-section of new physics

Models

Excited quarks

If quarks have substructure, expect excited states Benchmark model as used in previous searches of this kind

- String resonances
- Axigluons in chiral color models
- Flavour-universal color-octet colorons
- Techni-p meson in extended technicolor models
- \diamond Diquarks in superstring-inspired E₆ GUT model
- \diamond W' / Z' resonances in GUT theories
- Graviton excitations in warped extra dimensions

Dijet Mass Distributions

S/ \sqrt{B} Optimisation: $|\Delta \eta_{12}| < 1.3$

Dijet Resonance Search Analysis

6

- Fit the M_{jj} spectrum by a smooth function
 The same functional form is used by CMS and ATLAS
- Test statistical compatibility of the fit with null hypothesis ATLAS: 6 different statistical tests
- Use simulated resonance shapes at different M_{jj} points to set limits CMS tested different models and studied shapes for qq, qg, gg separately

Main systematics

- Jet Energy Scale (JES)
- Integrated luminosity
- Choice of background fitting function
- Jet Energy Resolution (JER)

Exclusion Limits for Dijet Resonances

CMS $L = 2.9 \, \text{pb}^{-1}$

excited quarks: $0.30 < M_{q^*} < 1.26 \text{ TeV}$

Tevatron: $260 < m_{q^*} < 870 \, \text{GeV} \, (L = 1.13 \, \text{fb}^{-1})$

excited quarks: $0.50 < M_{q^*} < 1.58 \text{ TeV}$, string resonances: $0.50 < M_S < 2.50 \text{ TeV}$, axigluons, colorons, E₆ diquarks

Dijet Angular Distributions

New physics may manifest itself as continuum deviation from SM in jet p_T spectra Many models (see slide 3)

Quark compositeness – benchmark model

Fundamental constituents are bound by new strong force with scale Λ At E $\ll \Lambda$ new force is visible in quark interactions as contact interaction

Require very good knowledge of JES and precise QCD predictions Instead, make use of angular distributions \rightarrow many systematics are cancelled

Dijet Centrality Ratio

CMS Dijet Centrality Ratio Analysis

• In QCD, R_{η} is nearly flat as a function of M_{jj}

- Take NLO corrected for hadronisation as SM prediction
- Data lie between corrected NLO and Pythia predictions

◆ Main systematics: relative difference in JES QCD modelling (NLO \leftrightarrow Pythia)

Results of CMS Dijet Centrality Ratio Analysis

• Use log likelihood ratio: $\Re = \ln \mathcal{L}_{alt} - \ln \mathcal{L}_{QCD}$

11

◆ Excluded: ∧ < 4 TeV at 95% CL

Previous limits: 2.8 - 3.1 TeV

Victor Lendermann, First Searches for New Physics at the LHC

Dijet Centrality Ratio

12

• Similar analysis. Excluded: $\Lambda < 2.0 \text{ TeV}$

Victor Lendermann, First Searches for New Physics at the LHC

Dijet χ Distribution

Results of ATLAS Dijet X Analysis

• For the highest mass bin $M_{jj} > 1.2$ TeV define:

 $F_{\rm X} = \frac{N_{\rm 1-4}}{N_{\rm all}}$

14

◆ Excluded: ∧ < **3.4 TeV** at 95% CL

Previous limits: 2.8 - 3.1 TeV

Multi-Body Final States

Non-perturbative states in models with low scale gravity / string physics. Typically models with large compactified extra dimensions. **Examples:**

 R_S – Schwarzschild radius

Look for threshold effect at high invariant masses Tevatron limits on ADD M_D: 800–940 GeV depending on N_{ED}
No theory of quantum gravity → No model for threshold behaviour
Semi-classical: high multiplicity, roughly democratic decay → dominated by jets
Cross section can be huge [→ O(100 nb) at √s = 7 TeV depending on mass scale]

Multijet Event in ATLAS

Victor Lendermann, First Searches for New Physics at the LHC

ATLAS Multi-Object Search Strategy

17

Minimum model assumptions

- Require at least 3 objects: jets, e, μ, γ
- Require high $\sum p_T > 700 \text{ GeV}$
- Look for deviations from SM at $M_{inv} > 800 \,\text{GeV}$
- Main SM background: QCD multijets Use MC Alpgen and Pythia for modelling
- Normalise MC to data in Control Region $300 < M_{inv} < 800 \,\text{GeV}$ and $\sum p_T > 300 \,\text{GeV}$
- Extrapolate predictions to Signal Region Rely only on the shape of MC, not the overall normalisation
- ◆ Use the difference between Alpgen and Pythia to estimate QCD uncertainty [apart from PDFs] Victor Lendermann, First Searches for New Physics at the LHC

ATLAS-CONF-2010-088

ATLAS Multi-Object Search Results

18

• Observed events: 193 in L = 295 nb⁻¹ of data at $\sqrt{s} = 7 \text{ TeV}$

• SM Prediction: 254 \pm 7% (stat.) \pm 37% (syst.)

◆ Main systematics: QCD, PDF, JES, CR

♦ Limit: σ × **A** < **0.34 nb** at 95% CL

♦ No good model to estimate acceptance. For simple simulations with sharp threshold at 800 GeV: A ~ 60% $\Rightarrow \sigma < 0.6$ nb

Conclusions

- First searches based on ~ 300 nb^{-1} 3 pb^{-1} already surpassed Tevatron limits
 - Dijet resonances
 - Dijet angular distributions
 - Stopped gluinos $[10 \text{ pb}^{-1}, \text{ not covered in this talk}]$
- Search of a new type
 - Exclude new high multiplicity states at high invariant masses
- Looking forward to new results based on full statistics 2010 (\sim 40 pb⁻¹)

19

Acknowledgements

Announcement

LHC-D BSM/SUSY Workshop 5–6th Mai 2011 at DESY, Hamburg

Your talk proposals are welcome! Contact LHC-D BSM/SUSY convenors

Theory

Herbert Dreiner Michael Kraemer

Experiment

Sascha Caron Victor Lendermann Christian Sander

Additional Information

ATLAS Multi-Object Search Strategy

22

Minimum model assumptions

ATLAS-CONF-2010-088

- Require at least 3 objects: jets, e, μ , γ
- ♦ Require high $\sum p_T > 700 \text{ GeV}$
- Look for deviations from SM at $M_{inv} > 800 \text{ GeV}$

Object Multiplicity for $\sum p_T > 300 \, \text{GeV}$

