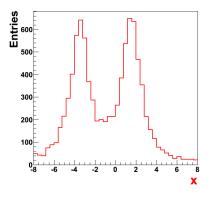
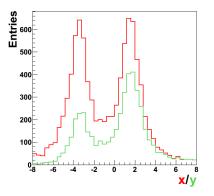
Unfolding A Statistics Group Project

Gero Flucke DESY

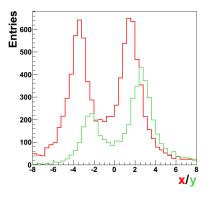


4th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale" December 1-3, 2010 Dresden

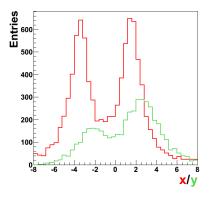
< ロ > < 同 > < 回 > < 回 >


- Unfolding: an ill-posed problem
- An Unfolding Framework
- Summary

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

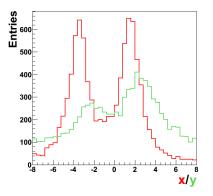

We measure a distribution:

- Nature produces f(x).
- Our detector has limited acceptance: f(x) ⇒ g(y).
- Probably we suffer from a bias.
- For sure resolution is limited.
- Background might be an issue.


We measure a distribution:

- Nature produces **f**(**x**).
- Our detector has limited acceptance: f(x) ⇒ g(y).
- Probably we suffer from a bias.
- For sure resolution is limited.
- Background might be an issue.

We measure a distribution:


- Nature produces **f**(**x**).
- Our detector has limited acceptance: f(x) ⇒ g(y).
- Probably we suffer from a bias.
- For sure resolution is limited.
- Background might be an issue.

We measure a distribution:

- Nature produces **f**(**x**).
- Our detector has limited acceptance: f(x) ⇒ g(y).
- Probably we suffer from a bias.
- For sure resolution is limited.

Background might be an issue.

We measure a distribution:

- Nature produces **f**(**x**).
- Our detector has limited acceptance: f(x) ⇒ g(y).
- Probably we suffer from a bias.
- For sure resolution is limited.
- Background might be an issue.

Measuring Process: More Formally

$\int A(y,x) f(x) dx + b(y) = g(y)$

Our Detector	True Distribution	Measured Distribution
 Limited 	Invariant Mass.	Another one!
Acceptance	Transverse	Including
Inefficiencies	Momentum.	background
 Limited 	Something	<i>b</i> (<i>y</i>)!
Resolution	multidimensional.	
•	•	J

Usual goal:

- Find out, whether a theory can describe f(x).
- But the measurement gives g(y)!
- Way out: We know our detector response A (hopefully pretty well).

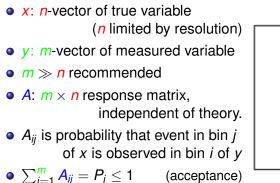
Data/Theory Comparison

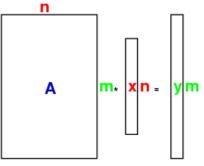
 $\int A_{sim}(y, x) f_{theo}(x) dx + b(y) = g_{theo}(y)$

Simulate Measurement Process

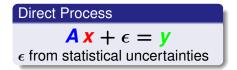
- Feed theoretical *f_{theo}(x)* through detector simulation *A_{sim}*.
- Add background b(y) (simulation / from data).
- Compare g_{theo}(y) to measured g(y).

- Probably the best one can do!
- But how to compare to
 - future theories?
 - another experiment?
- $\Rightarrow \text{ Need to} \\ \text{reconstruct } f(x) \text{ from } g(y), \\ \bullet \text{ using } A_{sim}, b(y). \end{aligned}$


 \Rightarrow Unfolding!


Here and in the following: Follow V. Blobel's notations.

$\int A_{sim}(y, x) f(x) dx + b(y) = g(y)$


Discretize to use linear algebra (for simplicity: skip background b):

A x = y

Unfolding is an Inverse Problem

The III-posed Inverse Problem

- Reconstruct input x from a measured output y.
- A washes out fine structures in x, cannot be reconstructed from y.
- ⇒ Small perturbation of the data can cause an arbitrary large perturbation of the solution.

Inverse Process

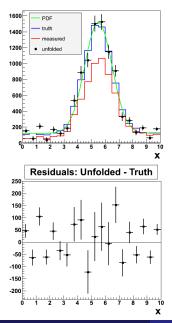
Find A[#] to get estimator x̂

$$\hat{\mathbf{X}} = \mathbf{A}^{\sharp}\mathbf{y}$$

• A^{\sharp} : $n \times m$ matrix, ("generalised inverse").

Least Squares Solution

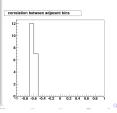
 $\mathbf{A}\mathbf{x} + \epsilon = \mathbf{y}$


• Minimise $(Ax - y)^T V_y^{-1} (Ax - y)$ (LS principle) $\Rightarrow A^{\sharp} = (A^T V_y^{-1} A)^{-1} A^T V_y^{-1}$ $\Rightarrow V_x = A^{\sharp} V_y A^{\sharp T}$ (standard error propagation)

(Small $y_i \Rightarrow$ use Maximum Likelihood with Poisson statistics.)

Result

- Unbiased estimator $\hat{x} = A^{\sharp}y$.
- Smallest variance V_x of all unbiased estimators.
- But you will see
 - large fluctuations
 - and large correlations!
- \Rightarrow next slide.


Matrix Inversion

Even Simpler Case

$$\mathbf{n} = \mathbf{m} \Rightarrow \mathbf{A}^{\sharp} = \mathbf{A}^{-1}$$

- True distribution (Gauss).
- Measured distribution:
 - some acceptance loss,
 - Gaussian resolution: $\sigma_x = 0.5$ (= bin width).
- Unfolding result.
- Residuals show large fluctuations.
- Accompanied by large negative correlations of adjacent bins:

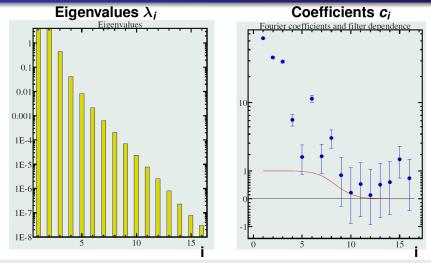
Gero Flucke (DESY)

Unfolding

Using Diagonalisation

• Diagonalise *n*-matrix $(AV_y^{-1}A^T) = U \wedge U^T$.

•
$$UU^T = U^T U = I$$
.


- A is diagonal matrix of Eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$.
- Now one can write

$$\hat{x} = \sum_{i=1}^{n} \frac{1}{\sqrt{\lambda_i}} c_i u_i, \qquad V_x = \sum_{i=1}^{n} \frac{1}{\lambda_i} u_i u_i^{T}$$

• *u_i* normalised Eigenvectors,

• c_i coefficients with uniform variance: $V_c = I$.

Eigenvalues Spectrum and Coefficients c_i

- Eigenvalues decrease by orders of magnitude.
- Coefficients c_i of small λ_i are insignificant (since: $V_c = I$).

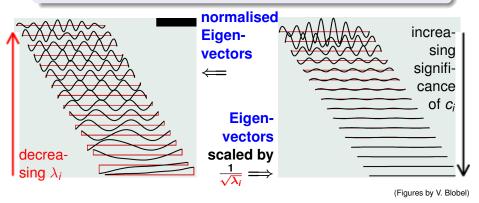

(Figures by V. Blobel)

Image: A matrix

Investigate Solution

$$\hat{x} = \sum_{i=1}^{n} \frac{1}{\sqrt{\lambda_i}} c_i u_i \qquad \qquad V_x = \sum_{i=1}^{n} \frac{1}{\lambda_i} u_i u_i^T$$

- $V_c = I$: Insignificant coefficients (noise, follow N(0, 1))
 - can make large contribution to \hat{x}
 - if Eigenvalues are small!

How to deal with Insignificant High Frequency Eigenvectors?

Simple Approach

• Cut-off, i.e. ignore insignificant coefficients c_i with $k < i \le n$

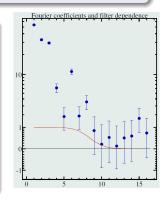
•
$$\hat{x} = \sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_i}} c_i u_i$$
 $V_x = \sum_{i=1}^{k} \frac{1}{\lambda_i} u_i u_i^T$

- Without any bias.
- Problems:
 - V_x singular (rank k < size n), i.e. V_x^{-1} does not exist.
 - Exact *k* not unambiguous: Prefer smooth cut-off.

Art of Unfolding: Regularisation

- Add penalty term to the minimised expression to make a smooth cut-off.
- Stay (almost) bias free.

Regularisation


New Expression to minimise

• Minimise
$$(Ax - y)^T V_y^{-1} (Ax - y) + \tau (Lx)^T Lx$$

- L: Matrix, depending on regularisation approach.
- τ : Regularisation parameter.

• With
$$L = I$$
 (identity):
 $\Rightarrow \hat{x} = \sum_{i=1}^{k} \frac{\phi_i}{\sqrt{\lambda_i}} c_i u_i,$
 $\phi_i = \frac{\lambda_i}{\lambda_i + \tau} = 1 \dots 0.$

- ⇒ Damping of (insignificant) contributions of small Eigenvalues.
 - But rank deficit of covariance V_x remains:
 - Fitting cumbersome without V_x^{-1} !
 - Collapse bins?

• Minimise
$$(Ax - y)^T V_y^{-1} (Ax - y) + \tau (Lx)^T Lx$$

Choice of Regularisation Scheme

- L = I: Norm of solution.
 - Easily usable for multi-dimensional distributions.
- L based on second derivatives expression.
 - Seems natural for physics: Assumption of smooth result.
 - Extension for more dimensions not straight forward.
- Entropy method adds a sum like $\tau \times \sum_i x_i \log x_i$.
 - Easily usable for multi-dimensional distributions.

• . . .

o . . .

Choice of Regularisation Parameter

- Depending on curvature vs. χ^2 ("L-curve").
- Choose point of smallest global correlations.

• Match $\sum \phi_i = \sum \frac{\lambda_i}{\lambda_i + \tau}$ to number of significant coefficients c_i .

Message to take away

Main inherent problems of unfolding:

- Smearing detector A(y,x) washes out fine structure of truth f(x) in measurement g(y).
- Straight forward unfolding introduces high frequency terms from fluctuations in g(y) (and large correlations).
- (Smooth) cut-off needed: regularisation.
- Often leads to covariance V_x being singular.

The Analysis Centre and Unfolding

Alliance Workshop in May 2010

• At DESY:

https://indico.desy.de/conferenceDisplay.py?confld=3009.

- Presentation of experts.
- \Rightarrow Revealed controversy among experts.
 - Presentation of experience with available implementations.

- 3 →

Some Algorithms

RUN

- by Volker Blobel (Uni Hamburg)
- regularised unfolding (L based on second derivatives)
- data internally represented by cubic B-splines instead of bins
- > 20 years old: FORTRAN

TRUEE

- C++ version of RUN
- by Natalie Milke (Uni Dortmund)
- extension for time dependence foreseen

GURU

- by Höcker and Kartvelishvili
- singular value decomposition (SVD similar to diagonalisation) with regularisation

Gero Flucke (DESY)

Some more Algorithms

TUnfold

- by S. Schmitt (DESY)
- least squares fit with free choice of regularisation scheme
- already shipped with ROOT (correct version since ROOT 5.27/04)

Iterative "Bayesian"

- by G. D'Agostini (University and INFN Roma1)
- Bayesian "knowledge update", starting with MC input
- various implementations (and also development)

Bin-by-Bin Corrections

- implemented in various analyses: $\hat{x}_i = N_i^{data} \left(\frac{N_i^{gen}}{N_i^{rec}}\right)_{MC}$
- not recommended: correct only for MC = truth

イロト イヨト イヨト イヨト

RooUnfold

- by Tim Adye (RAL) et al.
- Framework containing
 - iterative "Bayesian" algorithm,
 - singular value decomposition (SVD),
 - bin-by-bin method (for comparison not recommended).
- Since summer extended by
 - interface to TUnfold,
 - unregularised matrix inversion (for comparison).

< ∃ ►

Unfolding Framework

Getting people together,

within and beyond Alliance.

to develop a Framework for Unfolding Algorithms:

- common code accessibility,
- unified data handling,
- test framework,
- o documentation.
- Will not work as a black box:
 - Cannot relieve the user from the need to understand mechanisms, input,....

Unfolding Framework

- Decided to base work on RooUnfold
 - add response object A(y, x) with unbinned information (T. Adye),
 - integrate TRUEE (G.F., N. Milke),
 - work on improved version of "Iterative Bayesian" method (K. Bierwagen [Göttingen], J. Therhaag [Bonn]),
 - probably add simple Likelihood fit for comparison,
 - standalone, configurable main program (P. Cipriano [DESY]),
 - more test features.
- Discussing a systematic test of algorithms
 - "blind test" proposal (N. Gagunashvili [Iceland]),
 - exactly known detector response A(y, x)
 - comparing residuals, covariance, χ^2, \ldots
 - (best "figure(s) of merit" yet unclear)
 - still in starting phase.

Interested to learn more?

- More details on Alliance Wiki: https://www.wiki.terascale.de/index.php/Unfolding_Framework_Project
- Alliance Workshop in May 2010 at DESY (proceedings to come): https://indico.desy.de/conferenceDisplay.py?confld=3009
- To follow the activities, sign-up the mailing list https://lists.desy.de/sympa/review/hep-unfolding
- Last day of PHYSTAT 2011 (17.-20.1.2011 at CERN) dedicated to unfolding: http://indico.cern.ch/conferenceDisplay.py?confId=107747

You want to contribute?

- Contact me: gero.flucke@desy.de
- Sign up mailing list https://lists.desy.de/sympa/review/hep-unfolding-dev
- Monthly EVO meetings.

- Unfolding needed to compare
 - experiments with each other
 - and with (future) theories.
- Ill-posed problem due to smearing effect of response matrix A:
 - high frequency terms need to be regularised.
- Experts debate about correctness of each others method.
- Analysis Centre is working on a Framework for unfolding algorithms, including tests of algorithms.
 - Your experience (and expertise) welcome.
 - Will pay back in future!

For the Future:

Stay tuned!