

Search for new physics in multi-body final states at high invariant masses with ATLAS

Thorsten Dietzsch

Kirchhoff-Institut für Physik Universität Heidelberg

Physics at the Terascale - 4th Annual Alliance Workshop

December 2nd, 2010

Low-Scale Gravity

Hierarchy problem open question in the Standard Model

One solution

Large extra dimensions

Gravity: everywhere SM: our world

Low-Scale Gravity

Flux through surface area:FiNumber of dimensions:SuMore small dimensions:InPlanck-scale:EfFundamental gravity scale:M

Tevatron lower limit on M_D:

Field strength Surface area Increasing potential at small scales Effective scale in 3d world M_D 800 GeV (ADD model searches)

Low-Scale Gravity

Basic Assumptions and the Search Idea

No valid theory: model-independent search

Energy-coupling of gravity: equal decay probabilities to SM degrees of freedom

Inclusion of electrons, photons, muons, and jets

Non-Standard Model behaviour in final states of **more than two objects** with high **Sum(p**_T) and **high M**_{inv}

Object Selection

Jets $p_{_{\rm T}} > 40$ GeV, |eta| < 2.80

Electrons $p_{_{\rm T}} > 20 \text{ GeV}, |eta| < 2.47$

Photons $p_{_{\rm T}} > 20 \text{ GeV}, |eta| < 2.37$

```
Muons
p_{_{T}} > 20 \text{ GeV}, |eta| < 2.00
```


Background Object Multiplicities

Thorsten Dietzsch – University of Heidelberg

700

300

Μ

[GeV]

800

300

Background estimation MC-driven

Extrapolation from control region into signal region

Choice of control region: - statistics

- kinematic proximity

Background Estimation: Control and Signal Regions

Background Extrapolation

Assumption on shapes

Normalization of MC to data in control region

 $(Sum(p_T) > 300 \text{ GeV}, 300 \text{ GeV} < M_{inv} < 800 \text{ GeV})$

Difference between Alpgen and Pythia as systematic uncertainty

Experimental Result

Quantity	Value	Uncertainty	Uncertainty [%]
'/	Data		
Observed events	193)	
Luminosity [nb ⁻¹]	295	±32	$\pm 11\%$
Estip	ated Ba	ckground	
ALPGEN	254	±18	6.9%
Ρυτηία	174	±11	8.2%
Background (statistical)	254	± 18	6.9%
Syster	natic Un	certainties	
Background (QCD)		± 66.5	26%
PDF (choice)			$\pm 12\%$
PDF (error set)			+6.8%
PDF (error set)			-5.2%
Control region			$\pm 10\%$
Un-simulated backgrounds			$\pm 0.6\%$
Including e, γ, μ			$\pm 0.2\%$
Missing transverse energy			$\pm 0.02\%$
JES			$\pm 11.0\%$
ES (MET)			$\pm 0.5\%$
JER			$\pm 0.6\%$
Systematic uncertainty		+84	+33%

Observation consistend with SM Upper limit on cross-section x acceptance: 0.34 nb at 95% CL

Summary

Search for new physics in multibody final states in pp collisions at sqrt(s) = 7 TeV

Upper limit of 0.34 nb cross-section x acceptance

Simple acceptance estimation: Production cross section < 0.6 nb (Geom. cross section ~ 60 nb)

First search of this type. More to follow. Stay tuned.

ATLAS-CONF-2010-088

Backup material

Event and Object Selection

Events

Reject cosmics and other non-collision backgrounds via vertex requirements Single unprescaled jet trigger. Nominal energy threshold: 15 GeV

Jets

Infrared- and collinear safe jet algorithm (AntiKt4)

Input: topological clusters from calorimeter cells

Calibration from electromagnetic to hadronic scale via eta- and pT dependent correction Reject low pT and forward jets

Muons

Combined reconstruction from Muon System and Inner Detector via Chi² criterion Reject low pT and forward muons

Electrons and Photons

Reconstructed from cell clusters in the electromagnetic calorimeter Decision between electrons and photons based on track matching Reject low pT and forward objects

Missing E_T

Reconstructed from calorimeter cells from clusters Subtract energy of muon candidates

Overlap removal Topologically, based on Delta(R)

Muons not included

Transverse Momentum

PT and Missing Energy

Invariant Mass

Invariant Mass with Uncertainties

