

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Electroweak corrections to Neutralino and Chargino decays in the (N)MSSM

4th Annual Workshop

Helmholtz Alliance Physics at the Terascale Dresden

1-3 December 2010

Lehrstuhl für theoretische Physik II Universität Würzburg

The Minimal Supersymmetric Standard Model (MSSM)

- 1. Particle content:
 - Each SM fermion has a scalar as superpartner.
 - There are two Higgs and two fermionic Higgsino doublets.
 - Each gauge boson has a fermionic superpartner, called gaugino.

2. Particle mixing: Particles like the neutral Higgsinos and the neutral gauginos mix to e.g. four Neutralinos:

$$\left(\tilde{B}, \tilde{W}_3^0, \tilde{H}_d^0, \tilde{H}_u^0\right) \longrightarrow \left(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0\right)$$

3. Particle interactions: Interactions in supersymmetric theories are described by the superpotential W, which is in the MSSM given by:

$$W_{\text{MSSM}} = (Y_u)_{ij} \, \widehat{Q}_i \widehat{H}_u \widehat{u}_j^c + (Y_d)_{ij} \, \widehat{H}_d \widehat{Q}_i \widehat{d}_j^c + (Y_e)_{ij} \, \widehat{H}_d \widehat{L}_i \widehat{e}_j^c - \mu \widehat{H}_d \widehat{H}_u$$

 $\text{Remark:} \quad \widehat{L}_i = (\widehat{\nu}_i, \widehat{e}_i)^T, \ \widehat{Q}_i = (\widehat{u}_i, \widehat{d}_i)^T, \ \widehat{H}_u = (\widehat{H}_u^+, \widehat{H}_u^0)^T, \ \widehat{H}_d = (\widehat{H}_d^0, \widehat{H}_d^-)^T$

The Next-to-Minimal Supersymmetric Standard Model (NMSSM)

 μ -problem: Why is the μ -parameter at the electroweak scale? \implies NMSSM: Introducing a singlet-field \widehat{S} with the terms

 $-\lambda \widehat{S}\widehat{H}_{d}\widehat{H}_{u} + \frac{1}{3}\kappa \widehat{S}\widehat{S}\widehat{S}$ instead of $-\mu \widehat{H}_{d}\widehat{H}_{u}$

generates an effective $\mu = \frac{1}{\sqrt{2}}\lambda v_S$ -term (VEV $\langle S \rangle = \frac{1}{\sqrt{2}}v_S$).

Particle content

MSSM + singlet superfield \widehat{S}

Mixing with the MSSM particles:

- Neutralinos $\left(\tilde{B}, \tilde{W}_3^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right)$
- Scalars/Pseudoscalars $\left(H_{d}^{0},H_{u}^{0},S\right)$

 \implies Different Higgs sector with 3 scalars and 2 pseudoscalars

 \implies Slightly larger lightest Higgs mass m_h possible

Why do we consider the decays $\tilde{\chi}_i^0 \to \tilde{\chi}_j^{\pm} W^{\mp}$ and $\tilde{\chi}_j^{\mp} \to \tilde{\chi}_i^0 W^{\mp}$?

• Neutralino and Chargino decays are prominent decays for the the discovery of SUSY at the LHC and a future linear collider.

The partial widths are obtained from the following interaction Lagrangian:

$$\mathcal{L} = \overline{\tilde{\chi}_j^-} \gamma^\mu \left(P_L O_{Lji} + P_R O_{Rji} \right) \tilde{\chi}_i^0 W_\mu^- + \text{h.c.}$$

In the MSSM as well as in the NMSSM the couplings are given by:

Decays of a pure Bino \tilde{B} ((N)MSSM) or Singlino \tilde{S} (NMSSM) might be dominated by the NLO contributions!

Calculation of the NLO contributions using an on-shell scheme

Since Neutralinos and Charginos interact electroweak, their masses are measureable with high precision at future colliders: When performing higher order calculations an on-shell scheme is reasonable!

In the on-shell scheme these decays offer an ideal play ground to tackle the technical questions involved, namely

- UV and IR finiteness
- and in particular gauge invariance!

Well-known problem: In the Standard Model the renormalization of mixing matrices using an on-shell scheme is a priori gauge-dependent!

Use Neutralino and Chargino decays to test possible solutions within SUSY.

⇒ Example: Use some kind of pinch technique to address this problem: Proposal: Yamada, hep-ph/0103046 More details: S.L., Porod, arXiv:1011.6163

Electroweak contributions for $\tilde{\chi}_i^0 \rightarrow \tilde{\chi}_i^{\pm} W^{\mp}$

Self energies:

Pinch technique (for $\xi_V \neq 1$ relevant):

Vertex corrections:

Electroweak contributions for $\tilde{\chi}_i^0 \rightarrow \tilde{\chi}_i^{\pm} W^{\mp}$

NLO corrections in some benchmark scenarios in the NMSSM

We refer to mSUGRA (Djouadi et al.) and GMSB (Ellwanger et al.) scenarios:

- mSUGRA 4: GUT scale: $M_0 = 780$ GeV, $M_{1/2} = 775$ GeV, $A_0 = -2250$ GeV
- GMSB 2: $M_{Mess} = 10^{13}$ GeV, $\Lambda = 1.7 \cdot 10^5$ GeV

We define the correction factor

 $\delta = \frac{\Gamma^1 - \Gamma^0}{\Gamma^0}$ with $\delta_1 \equiv \text{only squarks/quarks}$, $\delta_2 \equiv \text{other sectors}$.

Sc.	Decay	Γ^0 (in GeV)	Γ^1 (in GeV)	$\delta_{1(ilde{q},q)}$	δ_2	δ_{1+2}
mSUGRA 4	$\tilde{\chi}_4^0(\tilde{B}) \rightarrow \tilde{\chi}_1^-(\tilde{H}^{\pm})W^+$	$5.055 \cdot 10^{-2}$	$5.449 \cdot 10^{-2}$	0.8%	7.0%	7.8%
	$\tilde{\chi}_5^0(\tilde{W}) \to \tilde{\chi}_1^-(\tilde{H}^{\pm})W^+$	$7.973 \cdot 10^{-1}$	$7.815 \cdot 10^{-1}$	1.2%	-3.2%	-2.0%
GMSB 2	$\tilde{\chi}_4^0(\tilde{H}) \rightarrow \tilde{\chi}_1^-(\tilde{W}^\pm)W^+$	7.972	7.738	1.4%	-4.3%	-2.9%
	$\tilde{\chi}_5^0(\tilde{S}) \to \tilde{\chi}_1^-(\tilde{W}^{\pm})W^+$	$1.247 \cdot 10^{-2}$	$1.055 \cdot 10^{-2}$	-2.1%	-13.3%	-15.4%

 \implies For \tilde{B} - or \tilde{S} -like Neutralino the corrections can be large! $\implies \delta_2$ contributions can be as large or larger than δ_1 contributions!

How large can these corrections get?

It might happen, that the Wino-Wino and Higgsino-Higgsino components of

$$O_{Llj} = -g\mathcal{N}_{i2}^*U_{j1} - \frac{1}{\sqrt{2}}g\mathcal{N}_{i3}^*U_{j2}, \qquad O_{Rlj} = -gV_{j1}^*\mathcal{N}_{i2} + \frac{1}{\sqrt{2}}gV_{j2}^*\mathcal{N}_{i4}$$

cancel each other on LO!

To observe this effect we take mSUGRA 1 and vary M_1 : mSUGRA 1: GUT scale: $M_0 = 180$ GeV, $M_{1/2} = 500$ GeV, $A_0 = -1500$ GeV

How large can these corrections get?

A second example for a Chargino decay $\tilde{W}^- \rightarrow \tilde{\chi}^0_2(\tilde{B}) W^-$

The results can be reproduced with the program CNNDecays (S.L, Porod, arXiv:1011.6163) with SLHA2 in- and output, which can be downloaded from:

www.physik.uni-wuerzburg.de/~sliebler/CNNDecays.tar.gz

# SUSY Les Houches Acco # S. Liebler, unpublish # Created: 26.11.2010, Block SPINFO 1 CNNDecays	ord 2— Neutralino + ed 18:04 # Program informati # spectrum calculat	Chargino NLO Decays into W boson on tor
1000022 2 107894	86F+02 # chi01	
1000023 3 871808	52E+02 # chi02	
1000025 -9.711138	35E+02 # chi03	
1000035 9.765161	10E+02 # chi04	
1000045 2.101573	50E+03 # S	
1000024 3.871587	09E+02 # chi1+	
1000037 9.770705	59E+02 # chi2+	
DECAY 1000045 1.6	8667313E-01 # S	
# BR	NDA ID1 ID2	
9.79638284E-01	2 1000037	-24 # BR(S -> chi2+ W-)
2.03617164E-02	2 1000024	-24 # BR(S -> chi1+ W-)
DECAYNLO 1000045	1.64835565E-01 # S	3
# BR	NDA ID1 ID2	
9.81192113E-01	2 1000037	-24 # BR(S -> chi2+ W-)
1.88078869E-02	2 1000024	-24 # BR(S -> chi1+ W-)

Next-to-leading order decay widths for Chargino and Neutralino decays into a W boson using an on-shell scheme \ldots

- ... are a good play ground to tackle gauge invariance in SUSY models.
- ... are naturally in the range of a few percent.
- . . . can be quite large in case of $bino(\tilde{B})$ and $singlino(\tilde{S})$ -like Neutralinos.
- ... are not necessarily dominated by squark and quark contributions! One should take into account full electroweak corrections, if accessible.

All the results can be found in arXiv:1011.6163, including the program CNNDecays!

Thank you for your attention!

If you want to know what happens to R-parity violating Neutralino decays $\tilde{\chi}_i^0 \rightarrow l^+ W^-$ and their relation to neutrino mixing angles, come to the "Neutrino masses and lepton flavour violation Working Group" on Friday!

Next-to-leading order decay widths for Chargino and Neutralino decays into a W boson using an on-shell scheme \ldots

- ... are a good play ground to tackle gauge invariance in SUSY models.
- ... are naturally in the range of a few percent.
- . . . can be quite large in case of $bino(\tilde{B})$ and $singlino(\tilde{S})$ -like Neutralinos.
- ... are not necessarily dominated by squark and quark contributions! One should take into account full electroweak corrections, if accessible.

All the results can be found in arXiv:1011.6163, including the program CNNDecays!

Thank you for your attention!

If you want to know what happens to *R*-parity violating Neutralino decays $\tilde{\chi}_i^0 \rightarrow l^+ W^-$ and their relation to neutrino mixing angles, come to the "Neutrino masses and lepton flavour violation Working Group" on Friday!

Masses for the benchmark scenarios

	$\tilde{\chi}_1^0$		$\tilde{\chi}_2^0$		$\tilde{\chi}_3^0$		\tilde{x}_4^0		$\tilde{\chi}_5^0$	
	m	C	m	C	m	C	m	C	m	C
mSUGRA 1	210.8	\tilde{B}	387.1	\tilde{W}	971.1	\tilde{H}	976.5	\tilde{H}	2101.6	Ŝ
mSUGRA 3	211.0	\tilde{B}	387.4	\tilde{W}	942.3	\tilde{H}	943.2	\tilde{H}	1421.7	Ŝ
mSUGRA 4	89.1	\tilde{S}	215.4	\tilde{H}	217.1	\tilde{H}	330.5	\tilde{B}	608.4	Ŵ
GMSB 1	472.5	\tilde{B}	620.1	\tilde{S}	854.1	\tilde{W}	1405.4	\tilde{H}	1412.4	\tilde{H}
GMSB 2	472.5	\tilde{B}	855.5	\tilde{W}	2352.4	\tilde{H}	2355.9	\tilde{H}	4062.8	\tilde{S}
GMSB 5	203.3	\tilde{S}	496.9	\tilde{B}	899.6	\tilde{W}	1377.7	\tilde{H}	1384.0	\tilde{H}

	<i>x</i> ₁	ŧ	$\tilde{\chi}_2^{\pm}$		
	m	C	m	C	
mSUGRA 1 mSUGRA 3 mSUGRA 4	387.2 387.5 201.4	${\scriptstyle \tilde{W}^{\pm} \ \tilde{W}^{\pm} \ \tilde{H}^{\pm}}$	977.1 947.4 608.4	${}^{\tilde{H}^{\pm}}_{\tilde{H}^{\pm}}_{\tilde{W}^{\pm}}$	
GMSB 1 GMSB 2 GMSB 5	854.1 855.5 899.6	$ \tilde{W}^{\pm} \tilde{W}^{\pm} \tilde{W}^{\pm} \tilde{W}^{\pm} $	1412.4 2355.3 1384.2	$ \tilde{H}^{\pm} \tilde{H}^{\pm} \tilde{H}^{\pm} \tilde{H}^{\pm} $	

Gauge dependence

