Top Activities in Karlsruhe

Jochen Ott

on behalf of the CMS collaboration and the Karlsruhe top group

Karlsruhe Institute of Technology

2010-12-02

- 1 $t\bar{t}$ Cross Section Measurement in the Lepton+Jets Channel private work
- 2 Search for Single Top in the *t*-channel based on public CMS results with $\sqrt{s} = 10$ TeV simulation from 2009
- 3 Search for High-Mass Resonances Decaying to $t\bar{t}$ private work

Disclaimer: most things I show today are based on work done in our group in Karlsruhe and are not (yet) official CMS results.

1 $t\bar{t}$ Cross Section Measurement in the Lepton+Jets Channel

2 Search for Single Top in the *t*-channel ($\sqrt{s} = 10$ TeV)

3 Search for High-Mass Resonances

Introduction

4 jets (2b-jets), 1 isolated high-energy lepton (e/ μ), $E_{\rm T}^{\rm miss}$

- important background for many BSM physics searches
- many interesting property measurements possible of this quasi-free quark

Event Selection: for lepton+jets channel

For the muon+jets channel:

- muon trigger
- one well reconstructed muon consistent with the beam spot with $|\eta| < 2.1$, $p_{\rm T} > 20 {\rm GeV}/c$ and relative isolation $I_{\rm rel} < 0.05$.

$$I_{\rm rel} = \frac{\sum_{\rm tracks \Delta R < 0.3} p_{\rm T} + \sum_{\rm calorimeter \Delta R < 0.3} E_{\rm T}}{p_{\rm T}^{\mu}}$$

- veto on events with additional isolated muons or electrons
- N_{jet} ≥ 3,4 where jets are reconstructed from calorimeter and tracker information (particle flow) with the anti-k_T algorithm with R = 0.5.
 Electron+jets selection is very similar, but uses electrons with |η| < 2.5, E_T > 30GeV and I_{rel} < 0.1.

No *b*-tagging or cut on E_T^{miss} is used to minimise dependence on these quite complex quantities.

Latest CMS public results

Latest official CMS results are for $0.84 \pm 0.09 \text{pb}^{-1}$, where we had 11 events for $N_{\text{jet}} \ge 4$:

Event Selection

Event yields for $N_{jet} \ge 4$ for $34pb^{-1}$:

Process	e+jets	$\mu+jets$	
W+jets	91 ± 11	107 ± 13	
Z+jets	14 ± 2	9.2 ± 1.4	
single top	7.4 ± 0.9	9.5 ± 0.8	
QCD	47 ± 9	5.0 ± 1.8	
tŦ	181 ± 34	206 ± 38	
Sum MC	341 ± 37	336 ± 41	
data	377	387	

Uncertainties include lumi and cross section uncertainties.

Measurement Strategy

- make a binned likelihood fit to M3 for N_{jet} ≥ 4, by varying fractions of W+jets, Z+jets, tt̄, single top and QCD
- simultaneously, fit $E_{\rm T}^{\rm miss}$ in $N_{\rm jet} = 3$ to extract background fraction

M3 is the invariant mass of the three jets with largest vectorial p_{T} sum.

QCD modeling

Build the QCD template for $E_{\rm T}^{\rm miss}$ and M3 by using data sidebands. For the μ +jets channel, the sideband is defined via $I_{\rm rel}$. In the electron+jets channel, some electron ID cuts are inverted.

Systematic Uncertainties

Systematic uncertainties include

- Q^2 scale for hard interaction
- matrix element/parton shower matching parameters
- amount of initial and final state radiation
- jet energy scale
- jet energy resolution
- parton distribution functions
- lepton trigger and reconstruction efficiency
- Iuminosity

To incorporate these, alternative templates for M3 and E_{T}^{miss} are derived by repeating the event selection on samples affected by these uncertainties.

Example Uncertainty: jet energy scale

Varying jet energy scale by $\pm 1\sigma$ uncertainty, acceptance and templates change.

Relative acceptance changes:

tŦ	templ	ate	changes:
----	-------	-----	----------

	less JES		more JES	
process	$N_{\rm jet}=3$	$N_{\rm jet} \geq 4$	$N_{\rm jet}=3$	$N_{\rm jet} \ge 4$
tī	+1.5%	-8.6%	-2.1%	+8.0%
single top	-6.8%	-12.2%	+5.9%	+12.2%
Z+jets	-12.1%	-12.5%	+13.4%	+14.5%
W+jets	-10.9%	-15.6%	+13.5%	+13.6%

Statistical Method

Use a Neyman construction with $\sigma_{t\bar{t}}^{fit}$ as test statistic by constructing the band of the central 68% $\sigma_{t\bar{t}}^{fit}$ as function of $\sigma_{t\bar{t}}^{in}$, using toy experiments:

Systematic uncertainties are included in the stage of toy experiments by drawing toy data from templates affected by systematic uncertainties.

Results, Outlook

Scaled to fit result:

The expected relative uncertainty on the $t\bar{t}$ cross section is $\mathcal{O}(0.1)$ statistical and a total uncertainty of $\mathcal{O}(0.2)$.

Strive for publication until Moriond (March 2011).

1 $t\bar{t}$ Cross Section Measurement in the Lepton+Jets Channel

2 Search for Single Top in the *t*-channel ($\sqrt{s} = 10$ TeV)

3 Search for High-Mass Resonances

4th Annual Terascale Workshop Top Activities in Karlsruhe 14 / 28

Introduction

cross sections for $\sqrt{s} = 7$ TeV, in pb: 4.6 | 64.6 | 10.6 The most promising production channel is the *t*-channel. Here: use μ decay channel.

Event Selection

- **1** muon trigger and one isolated muon with $|\eta| < 2.1$, $p_{\rm T} > 20 {\rm GeV}/c$
- 2 veto on events with additional isolated muons or electrons
- 3 exactly two jets with $|\eta| <$ 5.0, $p_{\rm T} >$ 30GeV/c
- 4 one b-tagged jet
- **5** veto on additional b-tagged jets (to reduce $t\bar{t}$ background)

Top-quark four-momentum reconstruction

Use $E_{\rm T}^{\rm miss}$, μ momentum, and m_W constraint to reconstruct the four-vector of the *W*-boson from the top decay.

Adding the momentum of the b-tagged jet yields an estimate for the top-quark four vector.

Measurement Strategy, Outlook

- use a binned likelihood fit to M_{lvb} to extract signal fraction
- alternatively, use a fit to the helicity angle θ* which exploits the V – A structure of the weak interaction and is more robust against many systematic uncertainties
- studies suggest that several 100 pb⁻¹ are required for a 3σ evidence. → study the use of multivariate techniques

1 $t\bar{t}$ Cross Section Measurement in the Lepton+Jets Channel

2 Search for Single Top in the *t*-channel ($\sqrt{s} = 10$ TeV)

3 Search for High-Mass Resonances

Introduction

Search for a heavy resonance decaying to $t\bar{t}$ in the muon+jets channel.

Could be axigluons, Kaluza-Klein states, topcolor Z', ... \rightsquigarrow try to be model-independent by searching bumps in $M_{t\bar{t}}$

jets might merge

lepton might not be well isolated
 adapt event selection

Event Selection

- 1 muon trigger and one well reconstructed muon with $|\eta| < 2.1, \ p_T > 20 \text{GeV}/c.$ Instead of an isolation cut, search the nearest jet (in ΔR) with $p_T > 25 \text{GeV}/c$ and calculate the relative transverse momentum of the muon w.r.t. the jet axis, p_T^{rel} .
- 2 $N_{\text{jets}} \ge 2$ with $p_{\text{T}} > 50 \text{GeV}/c$, $|\eta| < 2.4$ constructed from calorimeter and tracker information (particle flow).
- 3 $H_{T,lep} > 150 \text{GeV}$

Reconstruction

Use E_T^{miss} , μ momentum, and m_W contraint to reconstruct the four-vector of the *W*-boson from the top decay.

Make a list of hypotheses, assigning jets to either the leptonically decaying top quark t_{lep} , the hadronically decaying top quark t_{had} , or none of them. The top momenta are the sum of all assigned jets and leptons. Decay products are expected to be close in ΔR for high-energy top. \rightsquigarrow choose the hypotheses with minimal

$$\Delta R_{\mathsf{sum}} := \Delta R(t_{\mathsf{lep}}, \mu) + \Delta R(t_{\mathsf{lep}}, \nu) + \Delta R(t_{\mathsf{lep}}, b).$$

If there is more than one with the same value, choose the one with maximal $\Delta R_{t\bar{t}}.$

Reconstruction Performance

Relative $M_{t\bar{t}}$ resolution is about 9–12% for $M_{Z'} > 1 \text{TeV}/c^2$.

Measurement Strategy

- make a template fit to $M_{t\bar{t}}$ to extract Z' signal cross section / limit
- simultaneously, fit $H_{T,lep}$ in the region $H_{T,lep} < 150 \text{GeV}$
- use templates from Monte-Carlo except for QCD which is taken from 2D-cut sidebands

QCD modeling: cross checks

QCD model from data slightly different from Monte-Carlo, but consistent between different sidebands.

4th Annual Terascale Workshop

Top Activities in Karlsruhe 25 / 28

Plots

Backgrounds normalized to fitted fraction of $t\bar{t}$, W/Z+jets and QCD. the QCD model is from data sideband.

Outlook

- include electron+jets channel
- more studies using top-tagging for the hadronic side
- aim for public result early next year

After cross section measurement is established, focus on top quark properties. Studies concerning b-tagging, $t\bar{t}$ event reconstruction, and differential measurements (charge asymmetry) are ongoing and will be intensified.

References

- CMS-PAS-TOP-09-003: Prospects for the first Measurement of the $t\bar{t}$ Cross Section in the Muon-plus-Jets Channel at $\sqrt{s} = 10$ TeV with the CMS Detector
- CMS-PAS-TOP-09-004: Plans for an early measurement of the $t\bar{t}$ cross section in the electron+jets channel at $\sqrt{s} = 10$ TeV
- CMS-PAS-TOP-09-005: Prospects for the measurement of the single-top *t*-channel cross section in the muon channel with 200 pb⁻¹ of CMS data at 10 TeV
- CMS-PAS-EXO-09-008: Search for heavy narrow tt resonances in muon-plus-jets final states with the CMS detector
- CMS-PAS-TOP-10-004: Selection of Top-Like Events in the Dilepton and Lepton-plus-Jets Channels in Early 7 TeV Data