

Top-pair Reconstruction with KLFitter at the ATLAS Detector

Olaf Nackenhorst

supervised by K. Kröninger and A. Quadt

II. Institute of Physics

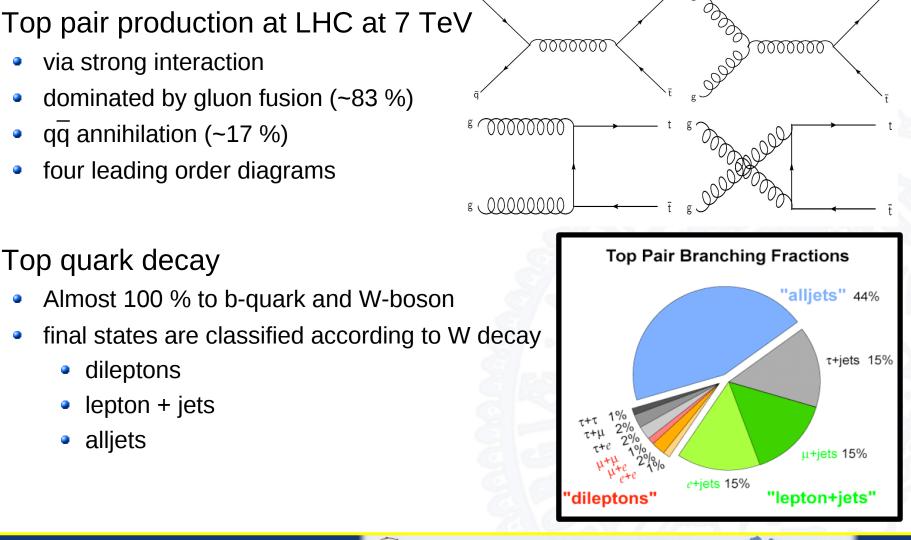
University of Göttingen

Introduction

KLFitter

Performance of KLFitter

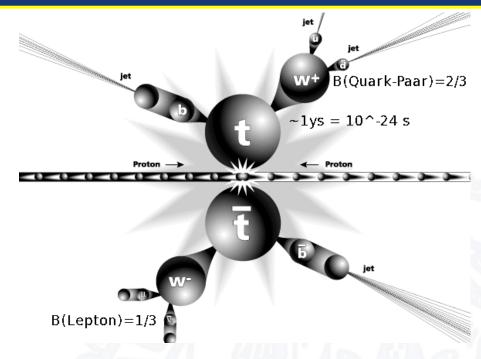
Summary & Outlook



GEFÖRDERT VOM

O. Nackenhorst HGF Annual Workshop, Dresden, 01.12.2010

Top Physics


the ATLAS Experiment

Lepton + Jets Decay Channel

- Lepton + jets
 - + large branching ratio (15% each)
 - neutrino
 - + complex signature:
 - four jets
 - one lepton
 - Missing ET
- Combinatorics
 - Jets are flavor/charge blind
 - → 24 combinations (jets/partons)
 - Indistinguishable light quarks
 - \rightarrow 12 combinations left

- Main background sources
 - Combinatorial background
 - $W \rightarrow Iv + 4 jets$

- Multijet background (QCD)
 - Fake isolated μ or fake e
 - Mis-reconstructed MET

Principle of Kinematic Fitting:

- Decay scheme is assumed to be known
 - $\rightarrow\,$ use constraints from the kinematics and particle properties
- Applicable to every topology / signature

Aims for Top Topology:

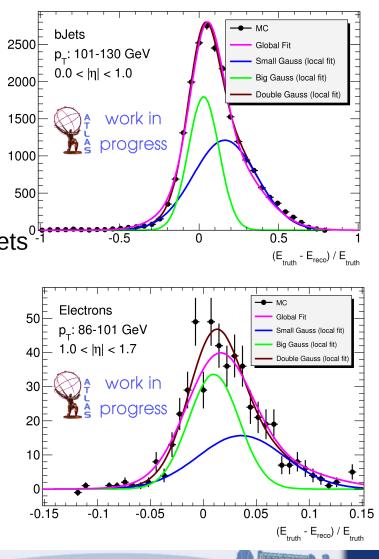
- Identify correct jet-parton assignment with kinematic fit
- Find better estimate for energies, angles of objects
- Determine all properties of objects (mass, pt, eta, ...)
- Identify b-jets

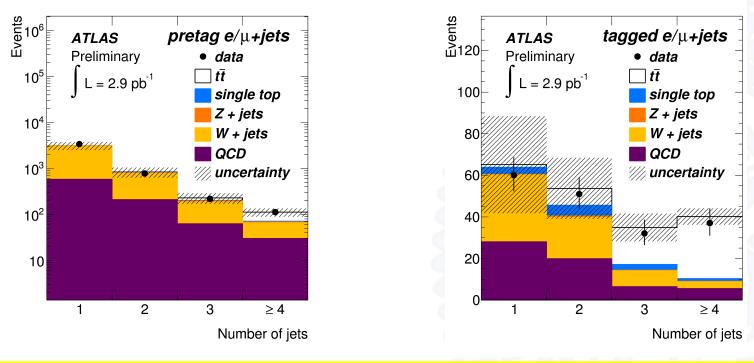
Tool: KLFitter – kin. Likelihood Fitter, developed in Göttingen

Likelihood Approach: Set up likelihood function \boldsymbol{L} for ttbar \rightarrow e+jets: $L = \left(\prod_{i=1}^{4} W(\tilde{E}_{i}, E_{i})\right) \cdot W(\tilde{E}_{l}, E_{l}) \cdot W(E_{x}^{\text{miss}} | p_{x}^{\nu}) \cdot W(E_{y}^{\text{miss}} | p_{y}^{\nu}) \cdot \left(\prod_{i=1}^{4} W(\tilde{\Omega}_{i} | \Omega_{i})\right) \cdot BW(m_{jj} | M_{W}) \cdot BW(m_{e\nu} | M_{W}) \cdot BW(m_{jjj} | M_{top}) \cdot BW(m_{e\nu j} | M_{top})$

the ATLAS Experiment

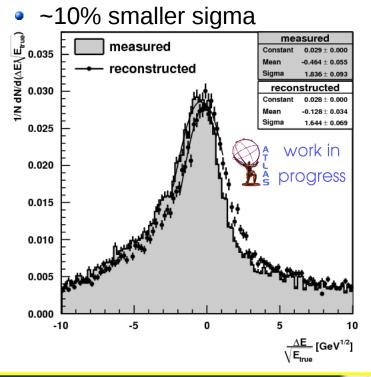
O. Nackenhorst HGF Annual Workshop, Dresden, 01.12.2010



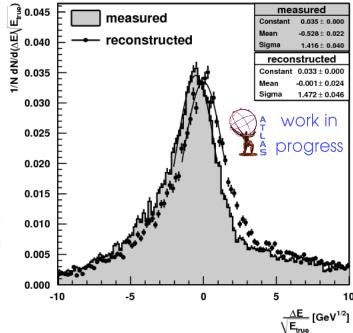

KLFitter (2)

- Constraints: Breit-Wigner W-boson masses, similar top masses
- Transfer functions W (E_{calo} | E_{parton})
 - double-Gaussian parameterization in
 - different η regions
 - E intervals
 - \rightarrow take asymmetric tails into account
 - Separately for electrons, light quarks and b-jets
- Maximize L in global parameter space, pick permutation with best L
- 17 Parameters:
 - Energy: E_{jet} (4), E_e (1)
 - Angle: Ω_{jet} (2x4)
 - Neutrino p_{x, y, z} (3)
 - Top Mass M_t (1)

- Event selection
 - Exactly 1 e/mu with pT > 20 GeV
 - MET > 20 GeV
 - MET + mT(W) > 60 GeV (triangular cut)
 - >= 4 jets with pT > 25 GeV, |eta| < 2.5 & >= 1 of them with SV0 weight > 5.72
 - Some additional cleaning cuts & overlap removal



GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

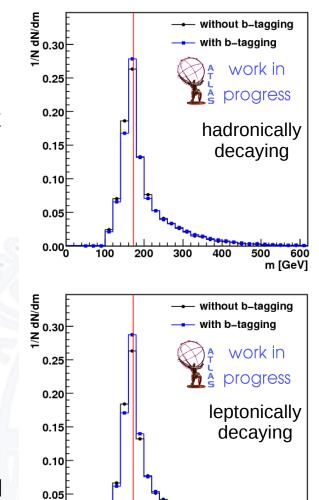

Jet Energy Resolution

- hadronic b-quark
- measured \rightarrow reconstructed
 - Mean: $-0.46 \pm 0.06 \rightarrow -0.13 \pm 0.04$
 - Sigma: $1.84 \pm 0.09 \rightarrow 1.65 \pm 0.07$
- Improvement
 - more centered

- leptonic b-quark
 - measured \rightarrow reconstructed
 - Mean: -0.53∓0.02 → -0.00∓0.02
 - Sigma: $1.42 \pm 0.04 \rightarrow 1.47 \pm 0.05$
 - Improvement
 - perfectly centered w.r.t errors
 - no smaller sigma

the ATLAS Experiment

O. Nackenhorst HGF Annual Workshop, Dresden, 01.12.2010


KLFitter with b-tagging

0.00

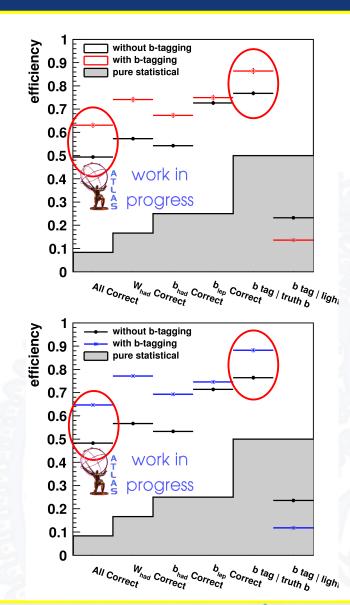
100

200

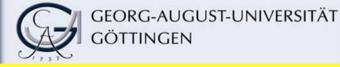
- Very simple b-tagging method applied
 - Weigh likelihood of certain permutation with zero if tagged b-jet is in position of a light quark
 - Further plans: use b-tagging probability instead
- Test on signal MC in mu+jets channel
 - Hadronically decaying top mass (top)
 - Slightly more pronounced peak
 - → less combinatorics
 - Leptonically decaying top mass (bottom)
 - Relatively larger improvement in peak
 - \rightarrow very unlikely to interchange b-jets
 - → if leptonic b-jet tagged, no combinatorial background in leptonic hemisphere

300

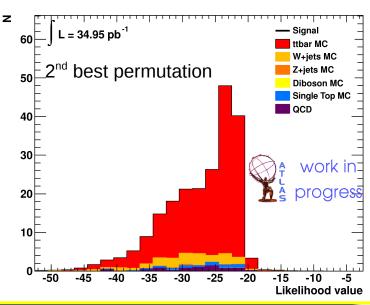
400

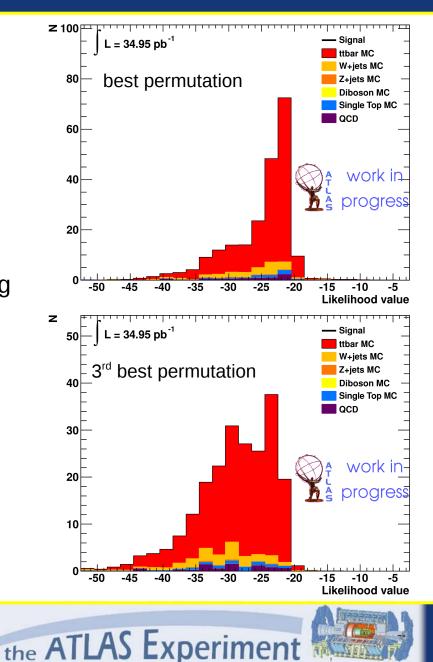

500

0 600 m[GeV]


Reconstruction Efficiency

- Based on truth matched events
 - Simple matching: dR < 0.3
- e+jets (31.2% are matched)
 - without b-tagging
 - ~50 % all correct
 - ~76 % b-jet correct
 - with b-tagging
 - ~63 % all correct
 - ~87 % b-jet correct
- mu+jets (29.6 % are matched)
 - without b-tagging
 - ~48 % all correct
 - ~76 % b-jet correct
 - with b-tagging
 - ~ 65 % all correct
 - ~ 88 % b-jet correct





Likelihood Function

- Following plots: mu+jets
- LogLikelihood Distribution
 - best permutation (top right)
 - 2nd best permutation (bottom left)
 - 3rd best permutation (bottom right)
 - well distinguishable
 - some separation power for signal / bkg

z

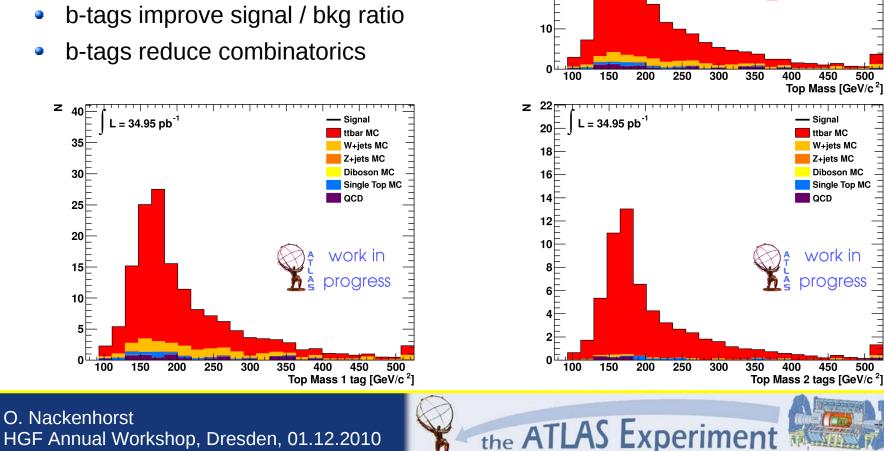
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Top Mass Parameter with b-tag

L = 34.95 pb

Signal

QCD


h & progress

ttbar MC W+jets MC

Z+jets MC Diboson MC Single Top MC

work in

- Top pole mass parameter
 - at least 1 b-tag required (top right)
 - 1 b-tag required (bottom left) ۲
 - 2 b-tags required (bottom right)
- well pronounced top mass peaks
- b-tags improve signal / bkg ratio
- b-tags reduce combinatorics

z 60

50

40

30

Top Mass & Kinematic

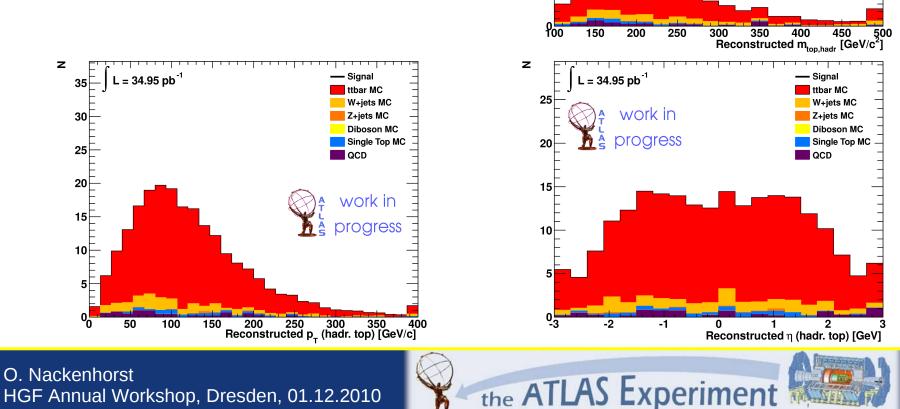
Signal

ttbar MC

W+jets MC Z+jets MC

Diboson MC

Single Top MC


work in

progress

h ŝ

L = 34.95 pb

- Hadronically decaying top
 - mass (top right)
 - pT (bottom left)
 - eta (bottom right)
 - shapes are reconstructed as expected (truth) 20
 - good signal over background ratio

z

60

50

40

30

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Miscellaneous

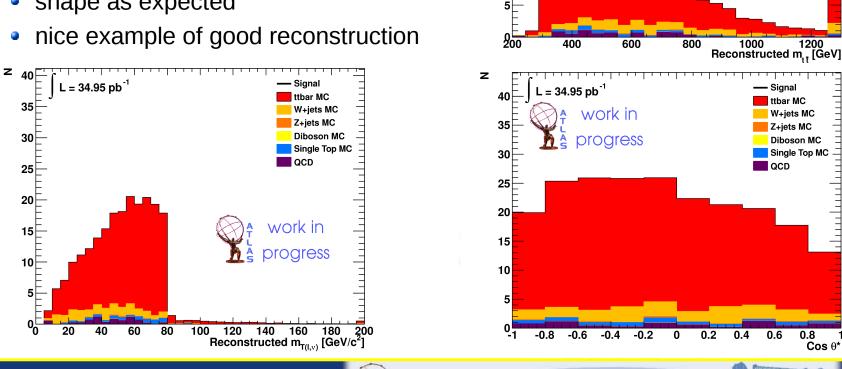
Signal ttbar MC

QCD

work in

progress

A


W+jets MC Z+jets MC

Diboson MC Single Top MC

 $L = 34.95 \text{ pb}^{-1}$

the ATLAS Experiment

- tT mass (top right) ١
 - can be reconstructed, but peak less pronounced compared to truth
- Transverse Mass of lept. W (bottom left)
 - hard cut due to BW constraint
- Cosine theta star (bottom right) ۲
 - shape as expected ٩

z

35

30

25

20

15

Summary & Outlook

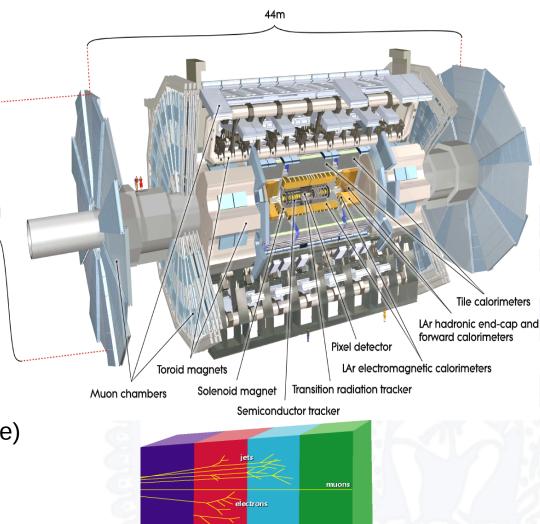
Summary

- KLFitter performs well with a good reconstruction efficiency and improvement in jet energy resolution
- b-tagging in KLFitter further improves the reconstruction
- The first 35 pb^{-1} of LHC data is in quite good agreement to MC
- Top mass is well reconstructed around the expected value
- Kinematics and properties of final state and reconstructed objects are well estimated
- Outlook
 - Data validation for e+jets channel is in preparation
 - KLFitter is used in several analyses
 - Göttingen
 - W-Helicity (Andrea Knue)
 - top mass (Stefan Guindon)
 - tT + γ (Johannes Erdmann)
 - Other universities and institutes are using or planning to use KLFitter for their studies

BACKUP

O. Nackenhorst HGF Annual Workshop, Dresden, 01.12.2010

the ATLAS Experiment



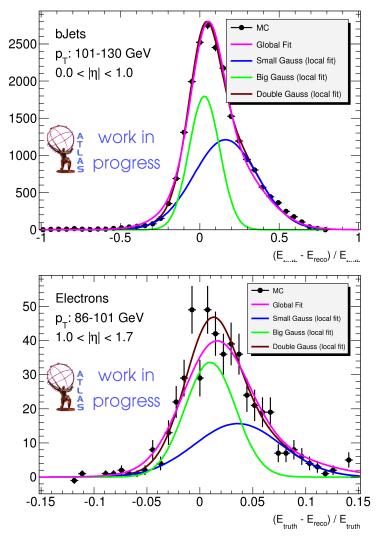
ATLAS

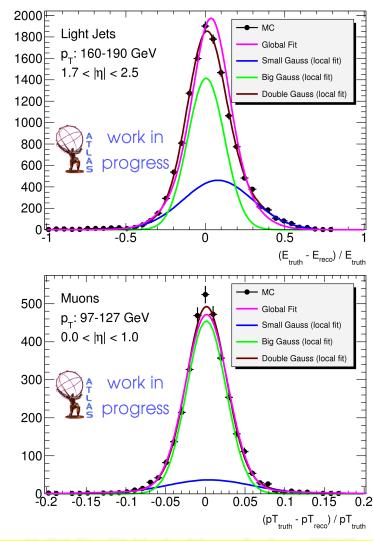
- Inner detector Tracking
 - Pixel
 - SCT
 - TRT: e/π separation
- Calorimetry
 - ECal: LAr
 - HCal: scint./steel + LAr
- Muon System
 - Trigger: RPC,TGC (fast)
 - Tracking: MDT,CSC (precise)

25m

Hadron

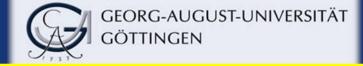
Muan


Tracking Detector


the ATLAS Experiment

Transfer Functions

New transfer functions for ttbar @ 7 TeV



Truth Matching Efficiency

• Truth matching necessary for calculating reconstruction efficiencies

$$\Delta R = \sqrt{\left(\Phi_{reco} - \Phi_{truth}\right)^2 - \left(\eta_{reco} - \eta_{truth}\right)^2} < 0.3$$

- Matched event: One-to-one assignment of all truth partons to jets
- The more jets, the higher the probability to match the event

Reconstruction Efficiency

- Only matched events can be taken into account
- Ratio of reconstructed events with correct permutation and matched events
- The more jets, the harder to find correct permutation
 - Statistical probability for n jets: P(all correct) = 2*(n-4)! / n!
 - Remove indistinguishable jet permutations

\rightarrow Total Efficiency affected by these two competing effects

