

# Towards a cross section measurement with a likelihood discriminant at the ATLAS experiment Anna Henrichs supervised by Arnulf Quadt and Lisa Shabalina



### Georg-August Universität Göttingen

GEFÖRDERT VOM







### 01.12.2010



- $\frac{\text{aim: measure } \sigma_{tt} \text{ on full 2010 ATLAS data set}}{(35-40 \text{pb}^{-1})}$
- Iepton + jets channel here only µ+jets

□ <u>idea</u>:

- combine information from kinematic quantities of single objects and the topology of the event
- create Likelihood discriminant from small set of well modelled variables
- allows for simultaneous fit of signal and background
- reduced statistical uncertainty



- based on selection for first top cross section measurement (see previous talk by C.Lange)
  - $\Box \geq 4$  AntiKt jets with  $p_T > 25$  GeV
  - missing transverse energy > 20 GeV
  - additional topological cut to reduce QCD
  - $\Box$  exactly I isolated  $\mu$  with  $p_T > 20$  GeV
  - no b-tag requirement
- QCD estimate on rate and shape from matrix method for first measurement - scaled to higher integrated luminosity

signal-to-background ratio ~0.8



# Variables (I)

- combine kinematic & topological quantities
- give best separation power and are well described in data





### Variables (II)

# chosen to have small sensitivity in shape to jet energy scale shifts





# Likelihood Distribution

# combine variables to likelihood distribution



- work
   -50
   100
   80

   progress
   -50
   100
   60

   LeptonEta
   100
   -0
   -20

   ExpAplanarity
   100
   -50
   -60

   ExpAplanarity
   100
   -50
   -60
- using TMVA (in ROOT 5.26)
   decorrelation method used to solve linear correlations
- use 50% of Monte Carlo statistics for Tt and W+jets events to create distributions
- evaluate with other 50% and 100% of other backgrounds & data





#### GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

## Fitting the Cross Section

### extract the cross section minimizing

$$F(\theta) = -\sum_{j=1}^{J} ln(\frac{\mu_j^n e^{\mu_j}}{n_j!}) = -\sum_{j=1}^{J} n_j ln(\mu_j) + \sum_{j=1}^{J} \mu_j + \sum_{j=1}^{J} ln(n_j!),$$



### pseudo-data from templates to show functionality!



# **Ensemble Testing**

0.04

- create pseudo data sets from templates and extract cross section from them  $$\sc s^{10^3}$$ ີຊຸດ.08 to test method: Tt JES up 0.07 arbitrary 🗕 Tt JES down statistical uncertainties 0.05
  - systematic uncertainties



### 01.12.2010



GEORG-AUGUST-UNIVERSITÄT Göttingen

# Separation of Jet Bins (I)

□ extend analysis to events with 3 jets, 4 jets, and ≥5 jets
 □ fit  $\sigma_{tt}$  simultaneously, together with N<sub>bkg</sub> in each channel
 □ keep same set of variables



01.12.2010

4. Annual Helmholtz Alliance Meeting



#### GEORG-AUGUST-UNIVERSITÄT Göttingen

# Separation of Jet Bins (II)

### Iikelihood distributions with pseudodata



□ stat. uncertainty on cross section from ensemble tests



### 01.12.2010



- $\hfill analysis working & in place to measure <math display="inline">\sigma_{tt}$  on full 2010 data set
- can improve sensitivity when adding events with 3 jets and perform combined fit
- combination with e+jets (Adam Roe) straightforward

- cross-checks, improvements and evaluation of all systematic uncertainties ongoing
- analysis will be dominated by systematic uncertainties
   but chose set of stable and JES independent variables
- collaboration with DESY Berlin group for overall analysis