Study of Vector Boson Scattering including Pile-up with the ATLAS Detector

•Philipp Anger, Jan Schumacher, Michael Kobel, Anja Vest philipp.anger@physik.tu-dresden.de

Institut für Kern- und Teilchenphysik der Technischen Universität Dresden

Terascale Workshop Dresden 02/12/2010

Vector Boson Scattering

Naive Standard Model without Higgs: Scattering of longitudinal W bosons rises infinitely:

$$\sigma\left(W_{\rm L}W_{\rm L} \to W_{\rm L}W_{\rm L}\right) \xrightarrow{\sqrt{s_{\rm WW}} \to \infty} \infty$$

- Intimately related to electro-weak symmetry breaking
- Perturbation theory violates unitarity above $\sqrt{s_{\rm WW}} \approx 1.2 ~{\rm TeV}$
- Vector Boson Scattering at LHC reaches this limit in parts of the phase space

Image: Image:

Motivation

Flagship Solution: Higgs Mechanism

- Also solves problem of masses in the Standard Model
- Introduction of a new scalar particle: Higgs boson

But: Higgs boson not discovered in experiment up to now

< □ > < ^[] >

No Higgs Observed

Unitarity conservation requires physics beyond the Standard Model

- Strong Electroweak Symmetry Breaking (review e.g. hep-ph/0203079)
- ▶ Technicolor (S. Weinberg, Phys. Rev. D13 (1976) 974)
- Neutrino condensation (C. T. Hill, M. A. Luty and E. A. Paschos, Phys. Rev. D43 1991)
- ▶ Top see-saw (B. A. Dobrescu and C. T. Hill, Phys. Rev. Lett. 81 1998)
- Advantage: Particular signals
- Disadvantage: A lot of them

Image: A matrix

EWChL and Unitarization

- Effective Electroweak Chiral Lagrangian (EWChL):

 - Approximates the rising edge of a resonance beyond the accessible mass range (anomalous couplings)
- No longer valid at LHC energies
 - "Resonances and Unitarity in Weak Boson Scattering"
 A. Alboteanu, W. Kilian and J. Reuter (arXiv:0806.4145v1)
 - ▶ Need resonance(s) with mass(es) *m* and coupling(s) *g* to weak bosons

weak isospin I		I = 0	I = 1	<i>I</i> = 2
7	J = 0	σ^0	0	$arphi^{0}$, $arphi^{\pm}$, $arphi^{\pm\pm}$
spin	J = 1 J = 2	f ⁰	$ ho$ 0, $ ho^{\pm}$	t^0 , t^\pm , $t^{\pm\pm}$

K-matrix formalism guarantees unitarization

Image: A matrix and a matrix

Experimental Signature

- Tagjets (3,4, large $p_{\rm T}$, large distance in η)
- Few jets between tagjets
- Final state ℓνℓν:
 - ► Missing *E*_T
 - Decay products (1,2) between tagjets

Analysis

Signal and Background Processes

- Signal: Resonance
- nce 🔹 🕨 Irreducible BG: QCD

proton

proton

- ► Irreducible BG: EW
- Also all SM triple and quartic boson vertices (except Higgs) included

▶ Single top (*Wt*)

• W/Z + jets

Top pairs tt

< □ > < ^[] >

Event Generator WHIZARD

WHIZARD: W. Kilian, T. Ohl, J. Reuter. FR-THEP-07-01, SI-HEP-2007-07, Aug 2007.

- Only generator that implements K-matrix unitarization with resonances
- http://projects.hepforge.org/whizard/

No Effective W Approximation

• Quark splitting "W/Z p.d.f."

Full matrix element for the six-fermion final state

- Angular correlations preserved
- Irreducible backgrounds included

Analysis

- Assumed integrated luminosity: 100 fb⁻¹ (not an early study)
- ▶ All samples for 14 TeV center-of-mass energy

Pile-up

- In-time pile-up: More than one proton-proton interaction per bunch crossing
- First studies with available samples to study general influence of pile-up
 - Poisson-distributed mean number of pile-up collisions: 6.9
 - ► Luminosity: $10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ (low luminosity pile-up)
- Goal: High luminosity pile-up

< < >>

Boosted Decision Tree

 $\rm TMVA$ (Toolkit for Multivariate Analysis), Release 4.0.6 $\tt http://tmva.sourceforge.net$

- Input variables
- Distributions...

- b-tag
- $p_{\rm T}$ of leptons
- invariant tagjet mass
- $\Delta\eta$ between tagjets
- transverse mass
- ▶ p_T of tagjets
- missing E_T
- lepton centrality ζ
- ▶ *p*_T balance
- minijet veto

 Training: Pile-up events trained with pile-up events and vice versa

Event Selection

Cutflow of Boosted Decision Tree Output

- Δ events \equiv (pile-up no pile-up)/(pile-up + no pile-up)
- Reducible backgrounds disappear for BDT cuts $r_{\rm cut} > 0.3$
- EW irreducible background most important background

Separate backgrounds. .

Discovery Significance

- Example: Discovery significance for φ resonance with m = 850 GeV and pile-up
- Profile likelihood method
- ► Optimal cut on BDT output: r ≥ 0.2 (best 5-sigma discovery significance)
- Assumed experimental luminosity: 100 fb^{-1} at $\sqrt{s} = 14 \text{ TeV}$
- Amount of Monte Carlo scaled to 100 fb⁻¹

Discovery Significance

Couplings discoverable (5σ) including pile-up and systematic uncertainties:

	g	Pile-up	Systematics
σ :	> 0.70	12.7%	69.9%
arphi:	> 1.05	7.2%	46.5%
ρ :	> 2.34	9.4%	42.2%
<i>f</i> :	> 1.43	14.1%	37.1%
t:	> 2.15	26.3%	53.7%

- ▶ Mass of resonances: 850 GeV
- Pile-up trained with pile-up and no pile-up trained without pile-up
- Reasonable couplings: $g \lessapprox 2.5$
- Higgs (σ , g = 1) discoverable
 - Systematic uncertainties . . .

Summary

This Analysis:

- ▶ ATLAS has discovery potential in the di-leptonic Vector Boson Scattering channel for resonances with a mass of 850 GeV in the relevant coupling range of $g \leq 2.5$ for 100 fb⁻¹ of data at 14 TeV center-of-mass energy
- \blacktriangleright Effect of systematic uncertainties: $\approx 50\%$
- \blacktriangleright Contribution of low luminosity pile-up: $\approx 15\%$

Similar analyis of Jan Schumacher without pile-up:

- Upper limit setting potential
- ▶ Discoverable minimal couplings for m = 1150 GeV up to 100% worse compared to m = 850 GeV

Thank you!

2

・ロト ・回ト ・ヨト ・ヨト

BACKUP

2

イロト イヨト イヨト イヨト

Signal and Irreducible Backgrounds

proton

Background: QCD

- ▶ All generated with WHIZARD for 14 TeV
- Signal entangled with irreducible background
- WHIZARD $qql\nu l\nu$ samples available:
 - EW ... Resonances and QCD switched off
 - Signal + EW ... QCD switched off
 - ▶ QCD + EW ... Resonances switched off
- Realistic detector simulation using GEANT
- Assumed Monte Carlo Luminosites: 100 fb⁻¹
- Pile-up and no pile-up samples available
- \blacktriangleright Five resonance types at 850 GeV and 1150 GeV each

Reducible Backgrounds Back...

- Top pairs $t\overline{t}$
- ► MC@NLO
- Two-lepton filter
- Atlfast-II

- ► Single top (*Wt*)
- ► AcerMC
- Two-lepton filter
- Atlfast-II
- no pile-up available

- ► W/Z + jets
- Alpgen

Training options

- Number of trees: 1000
- Boosting type: Gradient
- ► Shrinkage: 0.3
- Separation type: Gini index
- Pruning method: Cost Complexity
- Pruning strength: 50
- Maximum number of nodes: 5

Event Selection - Fiducial Precuts

- $\Delta\eta$ between tagjets > 3.0
- ▶ p_T of tagjets > 20 GeV
 - Generator level
- $p_{\rm T}$ of 1st and 2nd lepton > 30 GeV
 - Generator level
 - Trigger plateau
- $m_{\text{leplep}} > 150 \text{ GeV}$
 - Removing Z+jets background
 - Caveat: Sample has a cut *m*_{leplep} < 200 GeV

- Triggers:
 - Electron trigger: 25 GeV
 - Muon trigger: 20 GeV

Input Variables Distributions • Back to Boosted Decision Tree ...

Philipp Anger (IKTP TU Dresden)

Input Variables Distributions • Back to Boosted Decision Tree ...

Philipp Anger (IKTP TU Dresden)

Input Variables Distributions Back to Boosted Decision Tree ...

э

Boosted Decision Tree Results • Back to BDT Cuttlow.

Philipp Anger (IKTP TU Dresden)

Terascale Workshop 02/12/10 22 / 15

TMVA Training Crosschecks

Trust a multivariate method? Statistical uncertainty of training?

Retraining with equivalent subsamples of the same size

Retraining with random picking of training events inside $\ensuremath{\mathrm{TMVA}}$

Retraining with samples with different number of events

- φ resonance with m = 850 GeV and pile-up
- ► Training uncertainty: 2.8%

Luminosity Studies

 φ resonance with m = 850 GeV and pile-up

Angular Separation of Leptons

- Signal shows clear lepton angular separation
 - Preserved by WHIZARD
 - Motivation for $l\nu l\nu$ final state
- Lepton angular separation $\Delta \varphi^{\ell \ell}$ no input variable of BDT
- ▶ No cut on BDT output ightarrow Possible control region at low $\Delta arphi^{\ell \ell}$
- After cut on BDT output ightarrow Separation power of $\Delta arphi^{\ell \ell}$ lost

Disentangling Signal and Irreducible Backgrounds

- Samples reweighted from high to low coupling values
- ► $S(g) = n_{\text{Signal}+\text{EW}}(g) n_{\text{Signal}+\text{EW}}(g = 0)$
- Reasonable couplings for strong EWSB: $g \lesssim \sqrt{2\pi} \approx 2.5$

Systematic Uncertainties Back to Results ...

The following systematic uncertainties are considered:

- ► Jet-energy scale: $E'_{jet} = (1 + e_1)E_{jet}$ with $\sigma_1 = 3.5\%$ ($|\eta| \le 3.5$) or $\sigma_1 = 7.5\%$ ($|\eta| > 3.5$)
- Jet-energy resolution: $E' = E + \Delta E$ with $\sigma_2 = 1$ and ΔE randomly drawn from a Gaussian with $\sigma(E) = \kappa e_2 \sqrt{E \times 1 \text{ GeV}}$ and $\kappa = 0.45$ ($|\eta| \le 3.5$) or $\kappa = 0.63$ ($|\eta| > 3.5$)
- Electron-energy scale: $E_{
 m e}' = (1 + e_3)E_{
 m e}$ with $\sigma_3 = 0.5\%$
- Electron-energy resolution: $E'_{e} = \left(1 + \frac{\Delta E_{T}}{E_{T}}\right) E_{e}$ with $\sigma_{4} = 1$ and ΔE_{T} randomly drawn from a Gaussian with $\sigma(E_{T}) = 0.0073 e_{4} E_{T}$
- Muon-energy scale: $E'_{\mu} = (1 + e_5)E_{\mu}$ with $\sigma_5 = 1\%$
- Muon-reconstruction resolution: E'_μ = (1 + p_T Δ (1/p_T))⁻¹ E_μ with σ₆ = 1% and Δ (1/p_T) randomly drawn from a Gaussian with σ(1/p_T) = e₆ √ ((0.011/p_T)² + ((0.00017)/(GeV))²)
 b-tag efficiency: b'_i = (1 + e₇)b_i with σ₇ = 10%
 Luminosity: σ₈ = 3%

(日) (同) (三) (三)