Tuning of MinBias and the Underlying Event with ATLAS

Markus Warsinsky, Albert-Ludwigs Universität Freiburg

Terascale Workshop, Dresden December 2, 2010

Summary

MC Tuning

- soft-QCD processes described by phenomenological models
 ⇒ parameters
 - multi-parton interactions
 - ISR/FSR
 - color reconnection
 - ...
- This talk: only minimum bias and underlying event tuning (mostly showing 7 TeV data, but 900 GeV data important for tuning)
- just a biased selection!

Results from:

- Phys. Lett. B 688 (2010) 21
- ATL-CONF-2010-024, 029, 031, 046, 047, 081

ATLAS Minimum bias philosophy

primary charged particle spectra:

$$\begin{array}{ll} \frac{1}{N_{\rm ev.}} \frac{{\rm d}N_{\rm ch}}{{\rm d}\eta}, & \qquad \frac{1}{N_{\rm ev.}} \frac{{\rm d}N_{\rm ev}}{{\rm d}n_{\rm ch}}, \\ \frac{1}{N_{\rm ev.}} \frac{1}{2\pi\rho_{\rm T}} \frac{{\rm d}^2N_{\rm ch}}{{\rm d}\rho_{\rm T}{\rm d}\eta}, & \qquad \left\langle \rho_{\rm T} \right\rangle \, {\rm vs.} \, \, N_{\rm ch} \end{array}$$

- no corrections to model-dependent definition (e.g. non-single diffractive)
- no extrapolation into unmeasured phasespace
- use well-defined phase-space: $p_{\rm T} > 500 \ {\rm MeV}, |\eta| < 2.5,$ $N_{ch} \ge 1 \ {\rm or} \ N_{ch} \ge 6 \ ({\rm later})$ $p_{\rm T} > 100 \ {\rm MeV}, |\eta| < 2.5,$ $N_{ch} \ge 2$

Data 2010

PYTHIA DW

···· MC / Data

PYTHIA 8

PHOJET

PYTHIA ATLAS AMBT1

PYTHIA ATLAS MC09

Data Uncertainties

1/N_{ev} · dN_{ev} /dn_{ch}

10

10-2

10-3

1.5

٥

Ratio

AUET1

ATLAS Preliminary

 $p_{_{\mathrm{T}}}$ > 100 MeV, $|\eta|$ < 2.5, n_{ch} \geq 2

√s = 7 TeV

Pseudorapidity density

- all models below the data
- AMBT1 \Rightarrow described later

Multiplicity

10 20 30 40 50 60 70 80

- low $N_{\rm ch}$ overestimated
 - \Rightarrow normalization bias

n_{ch}

Transverse Momentum

• Pythia6 p_T-ordered shower (AMBT1, MC09) too high around 10 GeV

$\langle ho_{ m T} angle$ vs. $N_{ m ch}$

 very sensitive to colour reconnection model, e.g. DW: older model

Underlying Event

 contributions additional to hard scattering: multi-parton-interactions, ISR, ...

How to measure the UE?

- Separate off hard scattering region
- Assume Di-jet structure
- Region transverse in ϕ to Jets is filled mostly by UE
- in ATLAS so far:
 - Use leading track to define directions
 - fully corrected to charged particle level
- Obs.: $\langle \textit{N}_{\rm ch}
 angle$ and $\langle \textit{p}_{\rm T}^{\rm sum}
 angle$ densities

AUET1

Underlying Event Data (*N*_{ch} profiles similar)

- pre-LHC tunes of PYTHIA6 too low, even at $\sqrt{s}=$ 900 GeV
- DW best (only shown tune based on Q^2 ordered shower)
- PHOJET problematic at both energies

ATLAS Minimum Bias Tune 1 (AMBT1)

- $\bullet\,$ first tune to 7 ${\rm TeV}$ LHC data
- Basis: ATLAS MC09 tune LO* PDF, p_T ordered shower, ... (MC09 tune described in ATL-PHYS-PUB-2010-002)

• regularization cut-off in $2 \rightarrow 2$ scatterings in multiple interactions:

$$p_T^{\min}(E_{cm}) = p_T^{\min}(E_{ref}) \cdot \left(\frac{E_{cm}}{E_{ref}}\right)^{\alpha}$$

•
$$p_T^{\min}$$
 lower \Rightarrow more activity

• regularization cut-off in $2 \rightarrow 2$ scatterings in multiple interactions:

$$p_T^{\min}(E_{cm}) = p_T^{\min}(E_{\mathrm{ref}}) \cdot \left(\frac{E_{cm}}{E_{\mathrm{ref}}}\right)^{\alpha}$$

- p_T^{\min} lower \Rightarrow more activity
- Matter overlap (double gaussian)
 - central \leftrightarrow peripheral collisions
 - large influence on $N_{\rm ch}$ tail

• regularization cut-off in $2 \rightarrow 2$ scatterings in multiple interactions:

$$p_T^{\min}(E_{cm}) = \boxed{p_T^{\min}(E_{ref})} \cdot \left(\frac{E_{cm}}{E_{ref}}\right)^{\alpha}$$

- p_T^{\min} lower \Rightarrow more activity
- Matter overlap (double gaussian)
 - $\bullet \ \ \mathsf{central} \leftrightarrow \mathsf{peripheral} \ \mathsf{collisions}$
 - large influence on $N_{\rm ch}$ tail
- colour reconnection
 - partition between $N_{
 m ch}$ and $\langle p_{
 m T}
 angle$

• regularization cut-off in $2 \rightarrow 2$ scatterings in multiple interactions:

$$p_T^{\min}(E_{cm}) = \boxed{p_T^{\min}(E_{ref})} \cdot \left(\frac{E_{cm}}{E_{ref}}\right)^{\alpha}$$

- p_T^{\min} lower \Rightarrow more activity
- Matter overlap (double gaussian)
 - $\bullet \ \ \mathsf{central} \leftrightarrow \mathsf{peripheral} \ \mathsf{collisions}$
 - large influence on $N_{
 m ch}$ tail
- colour reconnection
 - partition between $N_{
 m ch}$ and $\langle p_{
 m T}
 angle$
- ... (in total 5 parameters)

Introduction	AILAS Minbias	ATLAS UE	AMB11	AUETI	Summary
Tuning with	Professor		(1 bin. 1D example)	1	
 Random 	parameter point	s			
(Fur Phys	L C 65 (2010) 331)	_		

(Eur. Phys. J. C **65** (2010) 331) similar approaches used at LEP for fragmentation tuning (hep-ex/9511011)

- Random parameter points
- 2 Run generator

(1 bin, 1D example)

AMBT1

(Eur. Phys. J. C 65 (2010) 331) similar approaches used at LEP for fragmentation tuning (hep-ex/9511011)

- Random parameter points
- 2 Run generator
- **3** Fit interpolation in each bin

(Eur. Phys. J. C 65 (2010) 331) similar approaches used at LEP for fragmentation tuning (hep-ex/9511011) (1 bin, 1D example)

AMBT1

Tuning of MinBias and the Underlying Event with ATLAS

Markus Warsinsky

10/15

- 1 Random parameter points
- **2** Run generator
- **3** Fit interpolation in each bin
- **4** minimize χ^2

(Eur. Phys. J. C **65** (2010) 331) similar approaches used at LEP for fragmentation tuning (hep-ex/9511011) (1 bin, 1D example)

AMBT1

- Random parameter points
- 2 Run generator
- **3** Fit interpolation in each bin
- **4** minimize χ^2

(Eur. Phys. J. C 65 (2010) 331) similar approaches used at LEP for fragmentation tuning (hep-ex/9511011) (1 bin, 1D example)

AMBT1

Datasets

- ATLAS minbias in diffraction reduced phase-space
- ATLAS track-based UE data
- CDF UE data
- ATLAS-centric, more emphasis on minbias than on UE

AUET1

Tuning Results at $\sqrt{s} = 7$ TeV (900 GeV \Rightarrow similar conclusions)

- pseudorapidity density: very good description
- multiplicity: improvement of high multiplicity tail

Tuning of MinBias and the Underlying Event with ATLAS

Markus Warsinsky

Tuning Results at $\sqrt{s} = 7 \,\,{ m TeV}$ (900 GeV \Rightarrow similar conclusions)

- p_{T} : improvement, probably at limit of $p_{\mathcal{T}}$ ordered shower
- $\langle {\it p}_{\rm T}
 angle$ vs. $\it N_{
 m ch}$: perfect description

AMBT1 and Underlying Event

- no significant improvement in ATLAS UE description
- Minbias tune not necessarily an UE tune

AMBT1 and Underlying Event

- no significant improvement in ATLAS UE description
- Minbias tune not necessarily an UE tune
- CDF data described well ⇒ tension?

Atlas Underlying Event Tune 1 (AUET1)

- family (different PDFs) of tunes of HERWIG/JIMMY to ATLAS UE data
- includes also CDF data, but ATLAS-centric
- improvement of UE description
- more detail in ATL-PHYS-PUB-2010-014

ATLAS UE, $N_{ch}/p_T^{\rm sum}$ density in transverse region, $\sqrt{s}=7~{ m TeV}$

Atlas Underlying Event Tune 1 (AUET1)

- family (different PDFs) of tunes of HERWIG/JIMMY to ATLAS UE data
- includes also CDF data, but ATLAS-centric
- improvement of UE description
- more detail in ATL-PHYS-PUB-2010-014

ATLAS UE, $N_{ch}/p_T^{\rm sum}$ density in transverse region, $\sqrt{s}=7~{ m TeV}$

Summary

- Minbias:
 - Diffractive component overestimated (Pythia6)?
 - AMBT1: tune to special phase-space, large improvements
- Underlying Event:
 - Standard tunes too low
 - AMBT1: not much improvement
 - Tension between CDF and ATLAS data?
 - AUET1 for Herwig+Jimmy gives better description
- still room for improvement in MC tuning!

AUET1

Tuning Results at $\sqrt{s} = 900 \text{ GeV}$

- pseudorapidity density: very good description
- multiplicity: improvement of high multiplicity tail

Tuning Results at $\sqrt{s} = 900$ GeV

- $p_{\rm T}$: improvement, probably at limit of p_T ordered shower
- $\langle p_{\mathrm{T}}
 angle$ vs. N_{ch}: perfect description

Pythia6 parameters considered in the tuning (for AMBT1)

Parameter	Meaning	MC09c value	scanning range	AMBT1 value
PARP(62)	ISR cut-off	1.0	fixed	1.025
PARP(93)	prim. k_\perp cut-off	5.0	fixed	10.0
PARP(77)	CR suppression	0.0	0.25 1.15	1.016
PARP(78)	CR: strength	0.224	0.2 0.6	0.538
PARP(82)	MPI cut-off	2.31	2.1 2.5	2.292
PARP(83)	matter overlap	0.8	fixed	0.356
PARP(84)	matter overlap	0.7	0.0 1.0	0.651
PARP(90)	MPI energy rescaling	0.248	0.18 0.28	0.250
				-

Datasets used for Tuning

- ATLAS MinBias ($\textit{N}_{\rm ch} \geq 6, \textit{p}_{T} > 500~{\rm MeV})$
- ATLAS UE analysis
 - Used only charged multiplicities and momentum sums in the three regions.
 - only $\rho_T^{\rm lead} > 5.5/10\,{\rm GeV}$, turn-on region difficult to describe
- Non-ATLAS:
 - CDF Run 1 UE in leading jet analysis (Phys. Rev. D65 (2002) 092002)
 - CDF "MIN-MAX" cone analysis (Phys. Rev. D70 (2004) 072002)
 - CDF (p_T) vs. N_{ch} (Phys. Rev. D79 (2009) 112005)
 - CDF Z p_T and D0 dijet angular correlations (no big sensitivity)

