The Quark and Gluon Form Factor to Three Loops in Massless QCD

Tobias Huber Universität Siegen

In collaboration with T. Gehrmann, E.W.N. Glover, N. Ikizlerli, C. Studerus

Annual Helmholtz Alliance Meeting, Dresden, December 2nd, 2010

Outline

- Definition of the quark and gluon form factor in massless QCD
- (Brief) history and status of the form factors
- Computational techniques and results
- Applications
- Conclusion

Quark Form Factor

Quark form factor \mathcal{F}^q : $\gamma^* \to q\bar{q}$, massless, on-shell quarks

$$\gamma^*(q) \sim \overbrace{\bar{q}(p_2)}^{\mu} \left(\begin{array}{c} q(p_1) \\ = -i e \,\bar{u}(p_1) \,\Gamma^{\mu}_{q\bar{q}} \,u(p_2) \,, \qquad \Gamma^{\mu}_{q\bar{q}} = \gamma^{\mu} \,\mathcal{F}^q \right)$$

Can project on
$$\mathcal{F}^q$$
 via

$$\mathcal{F}^{q} = -\frac{1}{4(1-\epsilon)q^{2}} \operatorname{Tr}\left(p_{2} \Gamma^{\mu}_{q\bar{q}} p_{1} \gamma_{\mu}\right)$$

Perturbative expansion ($s_{12} \equiv q^2$)

$$\mathcal{F}^{q}(\alpha_{s}^{b}, s_{12}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}^{b}}{4\pi}\right)^{n} \left(\frac{-s_{12}}{\mu_{0}^{2}}\right)^{-n\epsilon} S_{\epsilon}^{n} \mathcal{F}_{n}^{q}$$
ms

Sample diagrams

Gluon Form Factor

• Gluon form factor \mathcal{F}^g : $H \to gg$, from effective vertex $\mathscr{L}_{eff} = -\frac{\lambda}{4} H F_a^{\mu\nu} F_{\mu\nu}^a$

$$\begin{array}{c} \Pi^{\mu\nu} & g_1(p_1), \mu \\ H(q) & \cdots & g_{2}(p_2), \nu \end{array} = i \,\lambda \,\Pi^{\mu\nu}_{gg} = i \,\lambda \,\mathcal{F}^g \,\left(g^{\mu\nu} \,p_1 \cdot p_2 - p_1^{\nu} \,p_2^{\mu}\right) \\ g_2(p_2), \nu \end{array}$$

Can project on \mathcal{F}^g via

$$\mathcal{F}^{g} = \frac{p_1 \cdot p_2 \ g_{\mu\nu} - p_{1,\mu} \ p_{2,\nu} - p_{1,\nu} \ p_{2,\mu}}{2(1-\epsilon)} \ \Pi_{gg}^{\mu\nu}$$

Perturbative expansion ($s_{12} \equiv q^2$)

History and status of the form factors I

- General multi-loop strategies
 - Segulate UV and IR divergences of amplitude dimensionally, $D = 4 2\epsilon$
 - Apply algebraic reduction methods, reduction is exact in D dimensions
 - Obtain amplitude as a linear combination of a small set of master integrals
 - At L loops, get poles up to $1/\epsilon^{2L}$
 - Computation of finite contribution at *L* loops requires (L m)-loop result to $\mathcal{O}(\epsilon^{2m})$
- Two-loop form factors through $\mathcal{O}(\epsilon^0)$ known since long
 - ${\scriptstyle
 ightarrow} ~~ {\cal F}_2^q$

 $\mathbf{\mathcal{F}}_2^g$

[(Gonsalves'83); Kramer,Lampe'87; Matsuura,van Neerven'88; Matsuura,van der Maarck,van Neerven'89]

[Harlander'00; Ravindran,Smith,van Neerven'04]

Also extension of \mathcal{F}_2^q and \mathcal{F}_2^g to all orders in ϵ

[Gehrmann,Maitre,TH'05]

• \mathcal{F}_2^q and \mathcal{F}_2^g through order $\mathcal{O}(\epsilon^2)$: First step towards three-loop accuracy

History and status of the form factors II

- Three-loop form factors \mathcal{F}_3^q and \mathcal{F}_3^g : Pole terms known through $\mathcal{O}(\epsilon^{-1})$, and also the finite pieces of the fermionic corrections to \mathcal{F}_3^q [Moch, Vermaseren, Voqt'05]
- Identification of masters for three-loop form factors
- Computation of three-loop master integrals

[Gehrmann, Heinrich, Studerus, TH'06; Heinrich, Maitre, TH'07] [Heinrich.Kosower.Smirnov.TH'09: Lee.Smirnov.Smirnov'10]

- Recently the full \mathcal{F}_3^q and \mathcal{F}_3^g have become available independently [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser'09] [Gehrmann, Glover, Ikizlerli, Studerus, TH'10]
- Extension of masters to two more orders in ϵ
- Allows to obtain \mathcal{F}_3^q and \mathcal{F}_3^g through $\mathcal{O}(\epsilon^2)$

The stage is set for the four-loop calculation

[Lee,Smirnov,Smirnov'10; Lee,Smirnov'10]

[Gehrmann, Glover, Ikizlerli, Studerus, TH'10]

[Gehrmann, Heinrich, Studerus, TH'06]

Computation of the three-loop form factors

Generate Feynman diagrams using QGRAPH. 244 diagrams contribute to \mathcal{F}_3^q , 1586 to \mathcal{F}_3^g .

[Nogueira'93]

- After projection on \mathcal{F}_3^q and \mathcal{F}_3^g , obtain hundreds of scalar integrals for each diagram
- Up to 9 different propagators in each integral
- Up to s = 4 (quark FF) or s = 5 (gluon FF) powers of irreducible scalar products $l_i \cdot l_j$ or $l_i \cdot p_k$ in numerator
- Use integration-by-parts (IBP) and Lorentz-invariance (LI) identities to relate different integrals
 [Chetyrkin, Tkachov'81; Gehrmann, Remiddi'00]
- Yields huge system of linear equations, have > 900000 equations already for $s \le 4$
- Perform Laporta reduction with AIR (Maple), FIRE (Mathematica), and Reduze (C++) [Laporta'01; Anastasiou, Lazopoulos'04; Smirnov'08; Studerus'09]
 - Pure computing time is from few weeks to two months
- Express each integral as a linear combination of 22 master integrals

Master integrals I

8 of the 22 masters are two-point functions or factorizable vertex diagrams (all known)

[Tkachov'81; Chetyrkin, Tkachov'81; Gorishnii, Larin, Surguladze, Tkachov'89] [Larin, Tkachov, Vermaseren'91; Bekavac'05; Lee, Smirnov, Smirnov'10]

In addition: 14 genuine three-loop vertex integrals

Master integrals II

14 genuine three-loop vertex integrals

 $A_{7,4}$

 $A_{9,2}$

 $A_{7,5}$

 $A_{9,4}$

 $A_{6,1}$

 $A_{7,3}$

 $A_{8,1}$

Criteria:

Number of propagators, bubble insertions planar vs. crossed topologies, Number of lines at outermost vertices.

Computational techniques for masters I

- Kinematics: $p_1^2 = p_2^2 = 0$, all propagators massless. Only one scale: $q^2 = (p_1 + p_2)^2$, which has to factor out
 - General form of the result: $A = i^3 S_{\Gamma}^3 \left[-q^2 i\eta \right]^{L \cdot D/2 n_p} \cdot f(\epsilon)$
- Required: Expansion of $f(\epsilon)$ about $\epsilon = 0$
 - Coefficients have increasing transcendentality T of Riemann ζ -function
 - Need all coefficients with $T \le 6$, (i.e. π^6 and ζ_3^2) for finite piece at three loops
 - ▶ Need all coefficients with $T \le 8$, (i.e. π^8 , $\pi^2 \zeta_3^2$, $\zeta_3 \zeta_5$, $\zeta_{5,3}$) for $\mathcal{O}(\epsilon^2)$ at three loops

$$\textbf{Gamma functions} \qquad A_{6,1} = i^3 S_{\Gamma}^3 \left[-q^2 - i \eta \right]^{-3\epsilon} \frac{\Gamma^7 (1-\epsilon) \Gamma^2 (\epsilon) \Gamma(3\epsilon) \Gamma^2 (1-3\epsilon)}{\Gamma^2 (2-2\epsilon) \Gamma(2-4\epsilon)}$$

Hypergeometric functions, use HypExp or XSummer

$$A_{6,3} = i^3 S_{\Gamma}^3 \left[-q^2 - i\eta \right]^{-3\epsilon} \frac{2\Gamma^6(1-\epsilon)}{(1-3\epsilon)\Gamma(3-4\epsilon)} \times \left[\frac{\Gamma(1-3\epsilon)\Gamma(3\epsilon)\Gamma(2\epsilon)\Gamma(\epsilon)\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} + \frac{\Gamma(3\epsilon-1)\Gamma(1-\epsilon)}{(1-2\epsilon)} {}_3F_2(1,1-\epsilon,1-2\epsilon;2-2\epsilon,2-3\epsilon;1) \right]$$

Computational techniques for masters II

Dimensional recurrence relations

$$I^{(D+2)} = g_0(D) I^{(D)} + g_1(D)$$

Obtain coefficients of Laurent series with high numerical precision. Fit rational constants with PSLQ
[Fer

[Tarasov'98; Lee'09]

[Ferguson, Bailey, Arno'99]

Results I

Structure of the one-loop form factors. $D = 4 - 2\epsilon$ and $S_R = e^{\epsilon \gamma_E} / \Gamma(1 - \epsilon)$

$$\mathcal{F}_{1}^{q}/S_{R} = \frac{C_{F}}{B_{2,1}} \left[\frac{4}{(D-4)} + D - 3\right]$$
$$\mathcal{F}_{1}^{g}/S_{R} = \frac{C_{A}}{B_{2,1}} \left[\frac{4}{(D-4)} - \frac{4}{(D-2)} + 10 - D\right]$$

Structure of the two-loop form factors

$$\mathcal{F}_{2}^{q}/S_{R}^{2} = C_{F}^{2} X_{C_{F}}^{q} + C_{F}C_{A} X_{C_{F}C_{A}}^{q} + C_{F}N_{F} X_{C_{F}N_{F}}^{q}$$
$$\mathcal{F}_{2}^{g}/S_{R}^{2} = C_{A}^{2} X_{C_{A}}^{g} + C_{A}N_{F} X_{C_{A}N_{F}}^{g} + C_{F}N_{F} X_{C_{F}N_{F}}^{g}$$

Structure of the three-loop form factors

$$\mathcal{F}_{3}^{q}/S_{R}^{3} = C_{F}^{3} X_{C_{F}^{3}}^{q} + C_{F}^{2}C_{A} X_{C_{F}^{2}C_{A}}^{q} + C_{F}C_{A}^{2} X_{C_{F}C_{A}^{2}}^{q} + C_{F}^{2}N_{F} X_{C_{F}^{2}N_{F}}^{q}$$

$$+ C_{F}C_{A}N_{F} X_{C_{F}C_{A}N_{F}}^{q} + C_{F}N_{F}^{2} X_{C_{F}N_{F}^{2}}^{q} + C_{F}N_{F,V} \left(\frac{N_{c}^{2}-4}{N_{c}}\right) X_{C_{F}N_{F,V}}^{q}$$

$$\mathcal{F}_{3}^{g}/S_{R}^{3} = C_{A}^{3} X_{C_{A}}^{g} + C_{A}^{2} N_{F} X_{C_{A}^{2} N_{F}}^{g} + C_{A} C_{F} N_{F} X_{C_{A} C_{F} N_{F}}^{g} + C_{F}^{2} N_{F} X_{C_{F}^{2} N_{F}}^{g}$$

$$+ C_{A} N_{F}^{2} X_{C_{A} N_{F}}^{g} + C_{F} N_{F}^{2} X_{C_{F} N_{F}}^{g}$$

Results II

Structure of the term $X_{C_F^3}^q$, unexpanded (22 terms, 3 pages), $D = 4 - 2\epsilon$

$$\begin{split} X^q_{C_F^3} &= -B_{4,1} \left(+ \frac{489406D^3}{625} - \frac{43304589D^2}{3125} + \frac{615952127D}{7500} + \frac{34015}{4(2D-7)} - \frac{109222498}{75(2D-9)} + \frac{50720}{9(3D-10)} + \frac{6816654}{11(3D-14)} \right. \\ &+ \frac{89728}{25(D-2)} - \frac{12581}{12(D-3)} + \frac{6489724}{15(D-4)} + \frac{19326056092}{7734375(5D-16)} - \frac{7186019918}{78125(5D-18)} + \frac{643118017984}{703125(5D-22)} \right. \\ &- \frac{1024}{3(D-2)^2} - \frac{779}{12(D-3)^2} + \frac{884312}{5(D-4)^2} + \frac{1187096}{15(D-4)^3} + \frac{745376}{15(D-4)^4} + \frac{91648}{5(D-4)^5} - \frac{53258146831}{562500} \right) \\ &+ \dots \\ &- s^3_{12}A_{9,4} \left(+ \frac{567D^3}{80000} - \frac{125091D^2}{800000} + \frac{1808937D}{1600000} + \frac{4067}{2304(2D-7)} + \frac{232399}{998400(2D-9)} \right. \\ &- \frac{16}{75(D-2)} - \frac{225}{448(D-3)} + \frac{8388688}{3046875(5D-16)} - \frac{574016}{234375(5D-18)} - \frac{7557808}{4921875(5D-22)} - \frac{38866491}{1600000} \right) \end{split}$$

Structure of the term $X_{C_F^3}^q$, expanded in ϵ

$$\begin{split} S_R^3 X_{C_F^3}^q &= -\frac{4}{3\epsilon^6} - \frac{6}{\epsilon^5} + \frac{1}{\epsilon^4} \left(2\zeta_2 - 25 \right) + \frac{1}{\epsilon^3} \left(-3\zeta_2 + \frac{100\zeta_3}{3} - 83 \right) + \frac{1}{\epsilon^2} \left(\frac{213\zeta_2^2}{10} - \frac{77\zeta_2}{2} + 138\zeta_3 - \frac{515}{2} \right) \\ &+ \frac{1}{\epsilon} \left(\frac{1461\zeta_2^2}{20} - \frac{214\zeta_2\zeta_3}{3} - \frac{467\zeta_2}{2} + \frac{2119\zeta_3}{3} + \frac{644\zeta_5}{5} - \frac{9073}{12} \right) \\ &+ \left(-\frac{53675}{24} - \frac{13001\zeta_2}{12} + \frac{12743\zeta_2^2}{40} - \frac{9095\zeta_2^3}{252} + 2669\zeta_3 + 61\zeta_3\zeta_2 - \frac{1826\zeta_3^2}{3} + \frac{4238\zeta_5}{5} \right) \\ &+ \epsilon \left(-\frac{343393}{48} - \frac{11896\zeta_7}{7} + \frac{22349\zeta_5}{3} + \frac{40835\zeta_3}{6} - 1203\zeta_3^2 - \frac{105553\zeta_2}{24} - \frac{7858\zeta_2\zeta_5}{15} + \frac{6083\zeta_2\zeta_3}{6} + \frac{36693\zeta_2^2}{40} - \frac{3931\zeta_2^2\zeta_3}{6} + \frac{321227\zeta_3^2}{840} \right) \\ &+ \epsilon^2 \left(-\frac{2512115}{96} + \frac{4160\zeta_{5,3}}{3} + \frac{45168\zeta_7}{7} + \frac{716537\zeta_5}{15} - \frac{137417\zeta_3}{12} - \frac{33148\zeta_3\zeta_5}{3} + \frac{12749\zeta_3^2}{6} - \frac{797995\zeta_2}{48} \right) \\ &- \frac{12361\zeta_2\zeta_5}{5} + \frac{18469\zeta_2\zeta_3}{2} + 1985\zeta_2\zeta_3^2 + \frac{7653\zeta_2^2}{80} - \frac{15491\zeta_2^2\zeta_3}{20} + \frac{1147979\zeta_3^2}{240} - \frac{74208727\zeta_2^4}{50400} \right) + \mathcal{O}(\epsilon^3) \end{split}$$

Applications of the form factors

- Both form factors have applications in many collider processes
- Quark form factor
 - Deep-inelastic scattering
 - Drell-Yan process $q\bar{q} \rightarrow W^{\pm}, Z^0, \gamma^*$
 - Two-parton contribution to $e^+e^- \rightarrow jets$
- Gluon form factor
 - Higgs-production: $gg \rightarrow H$

[Dawson'91; Djouadi, Graudenz, Spira, Zerwas'91-'93] [Harlander, Kilgore'01-'02; Catani, de Florian, Grazzini'01] [Anastasiou, Melnikov'02; Ravindran, Smith, van Neerven'03] [Anastasiou, Melnikov, Petriello'05; Moch, Vogt'05]

- N³LO without finite term
- $\sigma_{\text{tot.}}$ approximated to $\mathcal{O}(1\%)$ by $\sigma_{\text{tot.}}^{m_t \to \infty}$ up to $M_H \approx 2m_t$

[Krämer,Laenen,Spira '96, see also e.g. Harlander,Ozeren'09] [Pak,Rogal,Steinhauser'09; Anastasiou,Bucherer, Kunszt'09]

[Moch, Vermaseren, Vogt'04-'05]

[Hamberg, Matsuura, van Neerven'91]

Applications of the form factors

- The quark and gluon form factor are the simplest quantities with IR divergences at higher orders in massless QFT \Rightarrow Analytic result most desirable.
 - Prediction of the IR pole structure of QCD amplitudes

[Magnea, Sterman'90; Catani'98; Sterman, Tejeda-Yeomans'02; Gehrmann, Gehrmann-de Ridder, Glover'04-'05] [Becher, Neubert'09; Gardi, Magnea'09; Dixon'09; Dixon, Gardi, Magnea'09]

Relation between form factors, cusp (soft) ADM and quark / gluon collinear ADM (i = q, g and $C_q = C_F$, $C_g = C_A$ for the cusp ADM)

$$\begin{aligned} Poles(F_{1}^{i}) &= -\frac{C_{i}\gamma_{0}^{\text{cusp}}}{2\epsilon^{2}} + \frac{\gamma_{0}^{i}}{\epsilon} \\ Poles(F_{2}^{i}) &= \frac{3C_{i}\gamma_{0}^{\text{cusp}}\beta_{0}}{8\epsilon^{3}} + \frac{1}{\epsilon^{2}}\left(-\frac{\beta_{0}\gamma_{0}^{i}}{2} - \frac{C_{i}\gamma_{1}^{\text{cusp}}}{8}\right) + \frac{\gamma_{1}^{i}}{2\epsilon} + \frac{(F_{1}^{i})^{2}}{2} \\ Poles(F_{3}^{i}) &= -\frac{11\beta_{0}^{2}C_{i}\gamma_{0}^{\text{cusp}}}{36\epsilon^{4}} + \frac{1}{\epsilon^{3}}\left(\frac{5\beta_{0}C_{i}\gamma_{1}^{\text{cusp}}}{36} + \frac{\beta_{0}^{2}\gamma_{0}^{i}}{3} + \frac{2C_{i}\gamma_{0}^{\text{cusp}}\beta_{1}}{9}\right) + \frac{1}{\epsilon^{2}}\left(-\frac{\beta_{0}\gamma_{1}^{i}}{3} - \frac{C_{i}\gamma_{2}^{\text{cusp}}}{18} - \frac{\beta_{1}\gamma_{0}^{i}}{3}\right) + \frac{\gamma_{2}^{i}}{3\epsilon} - \frac{(F_{1}^{i})^{3}}{3} + F_{2}^{2}F_{1}^{i} \\ Poles(F_{4}^{i}) &= \frac{25\beta_{0}^{3}C_{i}\gamma_{0}^{\text{cusp}}}{96\epsilon^{5}} - \frac{\beta_{0}(24\beta_{0}^{2}\gamma_{0}^{i} + 13\beta_{0}C_{i}\gamma_{1}^{\text{cusp}} + 40C_{i}\gamma_{0}^{\text{cusp}}\beta_{1})}{96\epsilon^{4}} + \frac{1}{\epsilon^{3}}\left(\frac{7\beta_{0}C_{i}\gamma_{2}^{\text{cusp}}}{96} + \frac{3\beta_{1}C_{i}\gamma_{1}^{\text{cusp}}}{32} + \frac{\beta_{0}^{2}\gamma_{1}^{i}}{4} + \frac{\beta_{1}\beta_{0}\gamma_{0}^{i}}{2} \\ + \frac{5C_{i}\gamma_{0}^{\text{cusp}}\beta_{2}}{32}\right) + \frac{1}{\epsilon^{2}}\left(-\frac{\beta_{1}\gamma_{1}^{i}}{4} - \frac{C_{i}\gamma_{3}^{\text{cusp}}}{32} - \frac{\beta_{0}\gamma_{2}^{i}}{4} - \frac{\beta_{2}\gamma_{0}^{i}}{4}\right) + \frac{\gamma_{3}^{i}}{4\epsilon} + \frac{(F_{1}^{i})^{4}}{4} + (F_{1}^{i})^{2}F_{2}^{i} - \frac{(F_{2}^{i})^{2}}{2} - F_{1}^{i}F_{3}^{i} \end{aligned}$$

Assume Casimir scaling (universal cusp ADM). Need $\mathcal{O}(\epsilon)$ parts of 3-loop FFs for $\gamma_3^{q,g}$

Applications of the form factors

- Large Sudakov Logs can be resummed using the framework of SCET
- Matching coefficients for Drell-Yan and Higgs production can be obtained from quark and gluon form factor via on-shell matching of QCD onto SCET

$$C^{(q,g)}(\alpha_s(\mu^2), s_{12}, \mu^2) = \lim_{\epsilon \to 0} Z^{-1}{}_{(q,g)}(\alpha_s(\mu^2), \epsilon, s_{12}, \mu) F^{(q,g)}(\alpha_s(\mu^2), \epsilon, s_{12}, \mu^2)$$

The matching coefficients have the perturbative expansion

$$C^{(q,g)}(\alpha_s(\mu^2), s_{12}, \mu^2) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_s(\mu^2)}{4\pi}\right)^n C_n^{(q,g)}(s_{12}, \mu^2)$$

Numerically, for $s_{12} = -\mu^2$, $N_F = 5$ and with $\widetilde{\alpha}_s = \alpha_s(\mu^2)/(4\pi)$

$$C^{(q)} = 1 - 8.473 \,\widetilde{\alpha}_s - 48.61 \,\widetilde{\alpha}_s^2 - 1390 \,\widetilde{\alpha}_s^3 \stackrel{\mu=M_Z}{=} 1 - 0.080 - 0.004 - 0.001$$
$$C^{(g)} = 1 + 4.935 \,\widetilde{\alpha}_s - 24.04 \,\widetilde{\alpha}_s^2 - 4066 \,\widetilde{\alpha}_s^3 \stackrel{\mu=M_Z}{=} 1 + 0.047 - 0.002 - 0.003$$

Conclusion

- We computed the quark and gluon form factors to three loops in massless QCD
- Calculation requires dedicated computer algebra tools for generation, reduction, and computation of master integrals
- Result is given as linear combination of 22 master integrals
- The three-loop result is also available through to $\mathcal{O}(\epsilon^2)$
- Together with $\mathcal{O}(\epsilon^6)$ of one- and $\mathcal{O}(\epsilon^4)$ of two-loop form factors, the stage is set for the four-loop calculation
- Many applications, of which we discussed
 - infrared pole structure of QCD amplitudes
 - matching from QCD onto SCET

Backup slides

More applications of the form factors

Determination of resummation coefficients

[Collins, Soper, Sterman'84-'85; Magnea'00; Moch, Vermaseren, Vogt'05]

Check of exponential ansatz for planar n-point MHV amplitudes in N = 4 Super-Yang-Mills [Anastastiou,Bern,Dixon,Kosower'03; Bern,Dixon,Smirnov'05]

$$\mathcal{M}_n = \exp\left[\sum_{l=1}^{\infty} a^l \left(f^{(l)}(\epsilon) M_n^{(1)}(l\epsilon) + C^{(l)} + E_n^{(l)}(\epsilon)\right)\right]$$

• $M_n^{(1)}(\epsilon)$: one-loop amplitude, exact in ϵ .

$$f^{(l)}(\epsilon) = f_0^{(l)} + f_1^{(l)} \epsilon + f_2^{(l)} \epsilon^2$$

$$a = \frac{N_c \,\alpha_s}{2\pi} (4\pi e^{-\gamma_E})^\epsilon$$

• $C^{(l)}$ independent of n, and $E_n^{(l)}(\epsilon = 0) = 0$.