α_s Determination via the Differential 2-Jet-Rate at LHC

Markus Lichtnecker

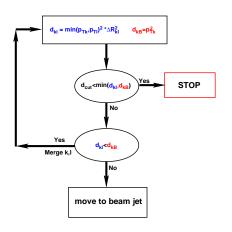
in discussions with
Otmar Biebel and Thomas Nunnemann

LMU München, LS Schaile

LHC-D physics meeting Dresden, 2.12.2010

Outline

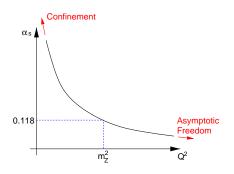
- Jet-Algorithms
- α_s and NLOJet++
- Influence of the Underlying Event
- Summary



Jets

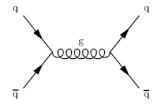
- Jets very important for many physics analysis: QCD, Top-Quark, Higgs, SUSY, etc.
- large statistics \rightarrow first data analysis e.g. $\alpha_{\rm S}$ determination
- several different Jet-Algorithms available (different physical and theoretical motivations)
- \bullet two big groups: Cone- and $k_T\text{-}\mathsf{Jets}$

Exclusive k_T -Algorithm, ΔR -scheme



- d_{min} : smallest value among d_{kB} and d_{kl}
- $\begin{tabular}{ll} & d_{Cut}: cut-off parameter until \\ & jets are merged \\ \end{tabular}$
- $\label{eq:dmin} \mathbf{d}_{min} > d_{Cut} \text{: all remaining}$ objects are classified as jets
- if d_{kl} is smallest, k and l are combined
- if d_{kB} is smallest, k is included in beam jet
- jet-size is dynamic, no overlapping jets

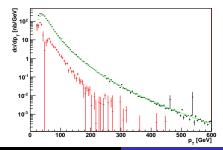
Exclusive k_T -Algorithm, ΔR -scheme


- infrared- and collinearsafe
- clusters objects close in momentum space
- distance between objects $d_{kl} = min(p_{Tk}^2, p_{Tl}^2) * R^2$ (with $R = \sqrt{\Delta \eta^2 + \Delta \Phi^2}$)
 - ightarrow objects clustered to Jets until $d_{kl} \geq d_{cut}$
 - \rightarrow number of Jets in final state depends on d_{cut}
- here (other way round): interested in d_{cut} for specific Jetmultiplicity
 - $ightarrow d_{23}$: d_{cut} -value where Jetmultiplicity flips from 3 to 2

Strong coupling constant α_s

- $\alpha_s = \frac{g_s^2}{4\pi}$ with color charge g_s
- processes with gluons needed to evaluate α_s (strength of gluon-coupling on colored particles = α_s)

α_s and Jets in hadron collisions


- $\sigma \sim \alpha_s^2$
- no emission of additional parton

- $\sigma \sim \alpha_s^3$
- emission of additional parton
- in theory: infrared and collinear divergences
 → need infrared- and
 - → need infrared- and collinearsafe observables,
 - e.g. k_T -Jets

NLOJet++

- NLOJet++ (version 4.1.3)
- by Zoltan Nagy
- used to generate inclusive 3 parton production @ NLO (Next-to-leading-order)
- e.g. Jet- p_T -distributions for born, nlo and full (born+nlo) ($p_T > 20~GeV$)

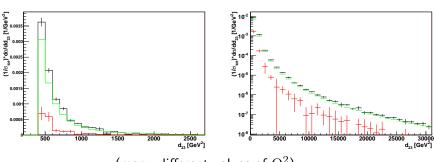
3-Jet-Rate

number of events with 3 Jets in final state

$$R_3 = \frac{\sigma_{3Jets}}{\sigma_{2Jets} + \sigma_{3Jets}}$$

- in LO proportional to α_s
- for more exact determination: NLO calculations $R_3(d_{23}) = A(d_{23}) * \alpha_s + B(d_{23}) * \alpha_s^2$
- entries in R₃-distribution are correlated
 → slope of R₃-distribution is uncorrelated

$$R_2 = 1 - R_3(-R_4)$$

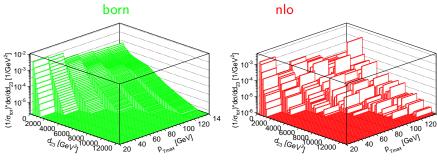

 \rightarrow in experiment: measure regions where R_4 is negligible

Differential 2-Jet-Rate

$$D_{23} = \frac{\Delta R_2}{\Delta d_{23}} = -\frac{\Delta R_3}{\Delta d_{23}} = \frac{\Delta A(d_{23})}{\Delta d_{23}} * \alpha_s + \frac{\Delta B(d_{23})}{\Delta d_{23}} * \alpha_s^2$$
$$= \frac{1}{N} * \frac{\Delta N}{\Delta d_{23}}$$

D_{23} (NLOJet++)

 D_{23} distribution of born, nlo and full



(many different values of Q^2)

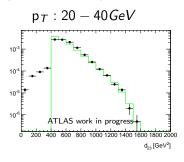
$m Q^2$ dependancy of $m lpha_s$ (NLOJet++)

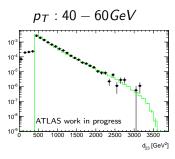
- ullet $lpha_{
 m s}$ depends on Q^2
- $Q^2 \cong p_{T,leading\ Jet}^2$

 D_{23} distribution vs. p_T (leading Jet)

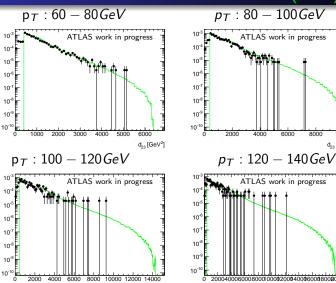
born and nlo distributions differ in shape!

Principle of $\alpha_{\rm s}$ measurement

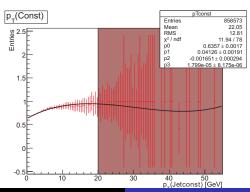

•


$$D_{23} = rac{1}{N} * rac{\Delta N(Q^2)}{\Delta d_{23}} = rac{\Delta A(d_{23}, Q^2)}{\Delta d_{23}} * lpha_s(Q^2) + rac{\Delta B(d_{23}, Q^2)}{\Delta d_{23}} * lpha_s^2(Q^2)$$

- get $\frac{1}{N} * \frac{\Delta N(Q^2)}{\Delta d_{23}}$ from measured data
- obtain $\frac{\Delta A(d_{23},Q^2)}{\Delta d_{23}}$ (=born) and $\frac{\Delta B(d_{23},Q^2)}{\Delta d_{23}}$ (=nlo) from NLOJET++
 - \rightarrow evaluate $\alpha_{\rm s}$ from fits on D_{23} -distribution

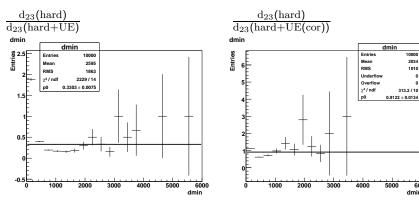

Comparison between data and NLOJET++(born)

- work in progress
- 5.6 million events (45.000 events with $p_T(jets) > 20 \text{ GeV}$) (just for testing)


Comparison between data and NLOJET++(born)

d₂₃ [GeV²]

How to correct d_{23} for UE? (PYTHIA)


- weight each particle ($p_T < 20~\mbox{GeV}$) in jet by probability not to come from UE (here: low-pT=3rd jet)
- weighing-factors from $[(\mathsf{Hard} + \mathsf{Tune}\ \mathsf{A}) (\mathsf{low} \mathsf{p_T})] / (\mathsf{Hard} + \mathsf{Tune}\ \mathsf{A})$

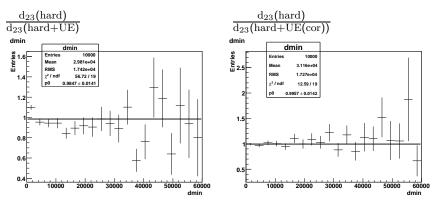
How to correct d_{23} for UE? (PYTHIA)

- \bullet weight each particle $(p_{\rm T} < 20~\mbox{GeV})$ in jet by probability not to come from UE
- ullet sum up corrected particles to new jets with corrected p_{T}
- calculate new d_{23} with new jet- p_T and original R: min of:
 - $d_{kl} = min(p_{Tk}^2, p_{Tl}^2) * R^2$ and
 - $\bullet \ d_{kB} = p_{Tk}^2$

$d_{23}(hard)/d_{23}(hard + UE)$ (PYTHIA)

hard scattering of $p_{Tmin} = 20 \text{ GeV}$

10000


2034

1010

6000

dmin

...same for $p_{Tmin} = 200$ GeV (PYTHIA)

hard scattering of $p_{Tmin} = 200 \text{ GeV}$

- \rightarrow small influence of the UE!
- \rightarrow influence of the UE decreases with higher $p_{\rm Tmin}$

Summary

- NLOJet++
 - useful for NLO calculations
 - born and nlo distributions differ in shape
 - ullet D₂₃ (differential 2-Jet-Rate) can be used to determine $lpha_{
 m s}$
 - ullet next: do the fit and determine $lpha_{
 m s}$
- Influence of the Underlying Event
 - ullet correction method for small p_{Tmin}
 - \bullet UE seems to have small influence at high p_{Tmin}