Quantum Machine Learning

Introduction - Examples - Opportunities

Kerstin Borras DESY Quantum Technology Task Force

<u>qt-task-force@desy.de</u>

DESY, IPC Seminar 24 Aug 2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Quantum Computing with ML Methods

Heather Gray, CERN Academic Training, https://indico.cern.ch/event/870513/

Quantum Machine Learning

- QML lies at the intersection between quantum computing and machine learning
- Usually, we're talking about using quantum computers to analyse classical data
- In many cases, the most promising methods are hybrid classical/quantum approaches
- Both quantum annealers and digital quantum computers have been explored
- Introductory QML <u>textbook</u>
- Recent review article about quantum machine learning in HEP
- Not trying to provide an overview here; rather trying to show examples of studies that have been performed

Don't fall for the hype! - Frank Zickert

DESY QT Task Force

12 May 2021

Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning the use of quantum computing for the computation of machine learning algorithms.

25

https://www.pyqml.com/

https://iopscience.iop.org/article/10.108 8/2632-2153/abc17d/meta

Just try to use it as soon as possible to benefit as soon as possible !

Kerstin Borras

Wide Variety of Opportunities to use QC with ML Methods

Sau Lan Wu, QuantHEP Seminar, https://quanthep.eu/event/quanthep-seminar-sau-lan-wu/

Our Goal:

To perform LHC High Energy Physics analysis with Quantum Machine Learning, to explore and to demonstrate that the potential of quantum computers can be a new computational paradigm for big data analysis in HEP, as a proof of principle

Our present program is to employ the following 3 quantum machine learning methods

- 1. Variational Quantum Classifier Method
- 2. Quantum Support Vector Machine Kernel Method
- 3. Quantum Neural Network Method

to LHC High Energy Physics analysis, for example ttH (H $\rightarrow \gamma\gamma$) and H $\rightarrow \mu\mu$ (two LHC flagship analyses).

Challenges that can be addressed with QML

Introduction

Very diverse challenges can be adressed with Quantum Machine Learning

- Simulation (lattice QCD, parton showers, detector, ...)
- Reconstruction (tracking, jet clustering,...)
- > Physics Analyses
- > Searches (Grover, ...)
- > Anomaly Detection, Classifier
- > Optimization (scheduling, ...)

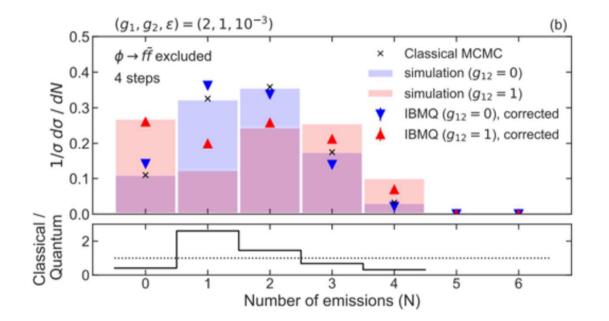
>

An up-to-date collection on quantum algorithms can be found here:

https://quantumalgorithmzoo.org/

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@microsoft.com. (Alternatively, you may submit a pull request to the <u>repository</u> on github.) Your help is appreciated and will be <u>acknowledged</u>.


Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial **Description:** Given an *n*-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in $\tilde{O}(n^3)$ time [82,125]. The fastest known classical algorithm for integer factorization is the general number field sieve, which is believed to run in time $2^{\tilde{O}(n^{1/3})}$. The best rigorously proven upper bound on the classical complexity of factoring is $O(2^{n/4+o(1)})$ via the Pollard-Strassen algorithm [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's for the special case of factoring "semiprimes", which are widely used in cryptography, is given in [271].

Hadronic Structure, Fragmentation, Parton Shower

C. Bauer, W. de Jong, B. Nachman, D. Provasoli - 1904.03196 [quant-ph]

Deeply inelastic scattering structure functions on a hybrid quantum computer

Niklas Mueller,^{*} Andrey Tarasov,[†] and Raju Venugopalan[‡] Physics Department, Brookhaven National Laboratory, Bldg. 510A, Upton, NY 11973, USA (Dated: August 21, 2019)

DESY. Quantum Technologies at DESY

DESY QT Task Force

A quantum algorithm for high energy physics simulations

Christian W. Bauer, Wibe A. de Jong, Benjamin Nachman, Davide Provasoli, arXiv:1904.03196 [hep-ph]

$$\mathcal{L} = \bar{f}_1 (i\partial \!\!\!/ + m_1) f_1 + \bar{f}_2 (i\partial \!\!\!/ + m_2) f_2 + (\partial_\mu \phi)^2 + g_1 \bar{f}_1 f_1 \phi + g_2 \bar{f}_2 f_2 \phi + g_{12} \left[\bar{f}_1 f_2 + \bar{f}_2 f_1 \right] \phi ,$$

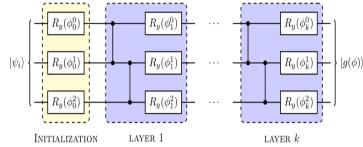
Parton Physics on a Quantum Computer

Henry Lamm,^{1,*} Scott Lawrence,^{1,†} and Yukari Yamauchi^{1,‡} (NuQS Collaboration) ¹Department of Physics, University of Maryland, College Park, Maryland 20742, USA (Dated: February 18, 2020)

Page 5

Quantum Generative Adversarial Network (GAN)

Quantum Machine Learning as Tool for fast and precise Simulations

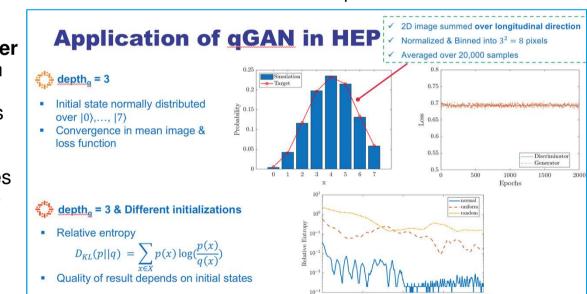

Complex MC simulation needed (digital twins) for LHC experiments

- Computational needs are beyond projected computational resources of HL-LHC
- Urgent need for new methods of fast simulation

CERN 7: "F openlab Deep Learning allows

to replace iterative simulation by Deep Neural Nets (typical approach: GAN)

- Even larger gain with Quantum Algorithms \Rightarrow **qGAN**
- Ongoing cooperation between **DESY-CERN** (1 Gentner Student)



https://www.nature.com/articles/s41534-019-0223-2

IBM/ETH Zürich suggested a Hybrid algorithm

- Quantum Generator + • **Classical Discriminator**
 - proposed for discrete prob. distribution

Calorimeter application needs continuous probability \rightarrow new approaches have to be developed

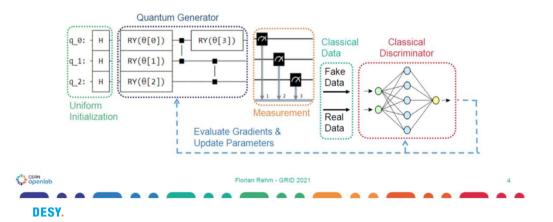
Material thanks to Su Yeon Chang (EPFL, CERN openlab) https://indico.cern.ch/event/852553/contributions/4057624/attachments/2127835/3582797/QGAN.pdf DESY.

Quantum GANs - Towards more complexity

Quantum Machine Learning as Tool for fast and precise Simulations

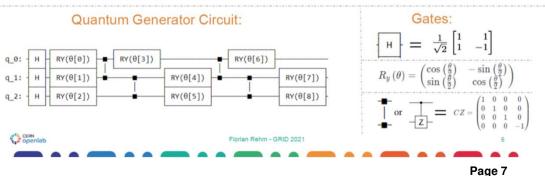
Quantum Machine Learning for HEP Detector Simulations

GRID 2021


Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

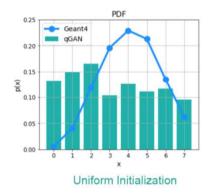
Hybrid qGAN

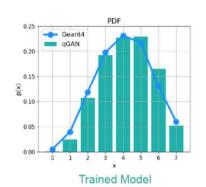

Quantum Generative Adversarial Networks

· Hybrid quantum - classical ansatz

1D Quantum Generator Circuit

- Only 1D 8-pixel images
 - 3 qubits $(2^3 = 8)$ in quantum generator circuit
 - 8 quantum states: |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩
- Modified a Qiskit qGAN model developed by IBM

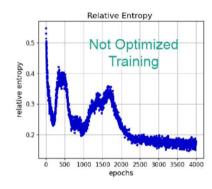


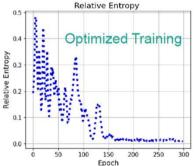

Quantum GANs - Towards more complexity

Quantum Machine Learning as Tool for fast and precise Simulations

1D Quantum Simulator

Without Noise


→ Good results


Optimize Training

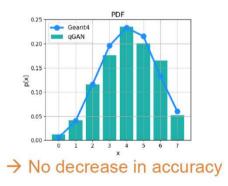
- Training time ~ 1 day for 3000 epochs
 - \rightarrow speeding training up
- Hyperparameter optimizations:
 - Higher learning rate
 - Implement exponential learning rate decay
 - Different generator and discriminator learning rate
 - Train discriminator more often than generator
- Results:
 - 10x speed up in training time
 → Only ~300 epochs instead of > 3000

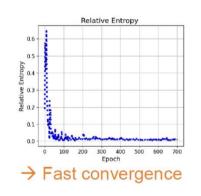
openlab

Florian Rehm - GRID 2021

Quantum GANs - Towards more complexity - Noise

Oubit Number

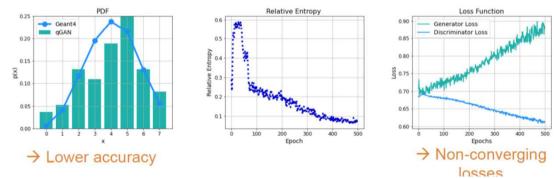

Readout Error


Quantum Machine Learning as Tool for fast and precise Simulations

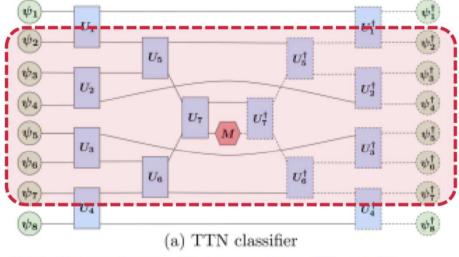
1D qGAN with Noise

Readout Noise Only

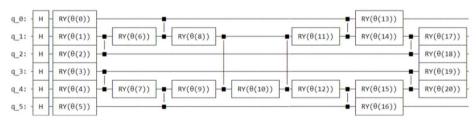
- We applied readout noise to the qubit measurements
 - Noise model from IBMq belem quantum computer



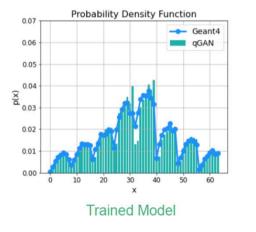
Full Noise Model

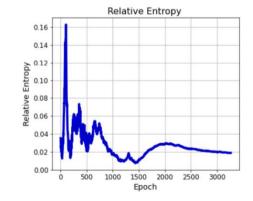

3.6% 4.7% 9.6%

- We applied noise to the qubit gates (readout noise + gate level noise)
 - Noise model from IBMq belem quantum computer
 - Average gate level noise: 4.32%


Quantum GANs - Towards more complexity - Dimensions

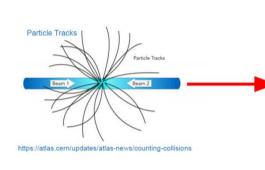
Quantum Machine Learning as Tool for fast and precise Simulations

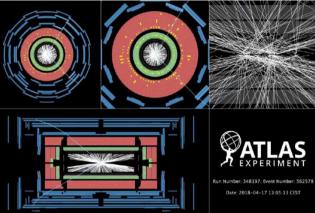

2D Quantum Generator Circuit


Tree Tensor Network Architecture

 $8 \times 8 = 64$ pixels $= 2^{6}$ Only 6 qubits

Grant, E., Benedetti, M., Cao, S. *et al.* Hierarchical quantum classifiers. *npj Quantum Inf* **4**, 65 (2018). https://doi.org/10.1038/s41534-018-0116-9

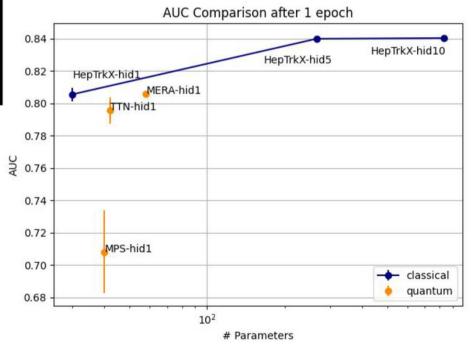



DESY.

Page 10

Quantum Graph Neural Networks for Particle Physics and beyond

Quantum Machine Learning for Particle Tracking and Flight Tracking


Results:

. . . .

- A comparison with Hep.TrkX after a single epoch shows that the QGNN model performs similarly.
- Better AUC possibly achievable by future improvements:

better hardware, more qubits, more training time

AUC: Area Under ROC, a measure of accuracy for different thresholds. AUC = 1.0 means perfect score.

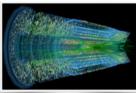
Material thanks to Cenk Tüysüz (METU,CERN openlab) https://indico.cern.ch/event/852553/contributions/4057625/attachments/2127652/3582465/IML_2020_cenk_tuysuz.pdf
DESY. Quantum Technologies at DESY | DESY QT Task Force
Page 11

Wide Variety of Opportunities to use QC with ML Methods

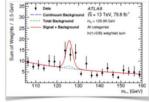
5

Heather Gray, CERN Academic Training, https://indico.cern.ch/event/870513/

Outline for Today


- Applications of quantum computing in HEP
 - Simulation
 - Parton shower correlations
 - Lattice QCD
 - Reconstruction
 - Particle tracking
 - Analysis
 - Higgs analyses
 - SUSY search

Progress has been very rapid here... Relying on a mix of published and unpublished results My apologies to anyone who's work I've left out or don't do justice to



Reconstruction

Analysis

Track reconstruction studies

- Quantum Annealing x 2
- Quantum Associative Memory
- Quantum Hough Transform
- Quantum Graph Neural Network

Incomplete list of other studies for HEP

- Quantum gate optimization for scientific applications: <u>https://arxiv.org/pdf/</u> 2102.10008.pdf
- Simulating collider physics on QC: <u>https://arxiv.org/pdf/2102.05044.pdf</u>
- Vertexing with QA: <u>https://arxiv.org/pdf/1903.08879.pdf</u>
- QA for jet clustering: <u>https://journals.aps.org/prd/abstract/10.1103/</u> PhysRevD.101.094015
- Unfolding with QA: <u>https://link.springer.com/article/10.1007/</u> JHEP11(2019)128
- Unfolding to mitigate readout errors: <u>https://www.nature.com/articles/</u> <u>s41534-020-00309-7</u>

DESY. Quantum Technologies at DESY

DESY QT Task Force

Quantum Technology at DLR

2/36

DLR

Applications of Quantumtechnologies at DLR GSOC

Dr. Andreas Spörl

DLR general: Ca. 8000 people, 50 institutes, 26 sites

QuantumTech DLR:

DLR-QT (Ulm) Quantum Technologies

DLR-SI (Hannover) Satellite Geodesy & Inertial Sensing

DLR-SC (Köln) Simulation & S/W TechLab

DLR-TT (Stuttgart) Technical Thermodynamics

DLR-KN (Oberpfaffenhofen) Communications & Navigation

DLR-MF (Oberpfaffenhofen) Remote Sensing

....

DLR-RB (Oberpfaffenhofen) German Space Operations Center

Quantum Computing at DLR

11/36

Example from DLR

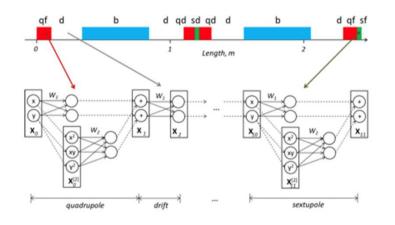
Applications of Quantumtechnologies at DLR GSOC

Dr. Andreas Spörl

Quantumalgorithms in Satellite operations: QuATHMOS: Anomaly detection via QuantumMachineLearning

Telemetry data is represented in a feature vector space. A model is trained by nominal data. Outliers are detected to point out anomalies.

Applicable Quantum Algorithms

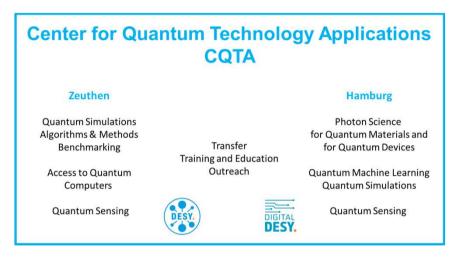

Quantum Principle Component Analysis

Quantum Support Vector Machines

Challenge: How to get telemetry data to the quantum computer?

QC Opportunities from the Particle Accelerators Perspective

Quantum algorithms in particle beam dynamics and ML



To be noted: Our current interest within the M mission is to leverage ML and HPC for design, operation and automation of (electron) accelerator facilities.

- Example application: regularization techniques for training of DNNs for control and modelling of accelerators based on QUBO
- Open question for R&D: beam dynamics simulations: classical many-body systems on quantum computers?
 Synergies with FH/FS/AP
- Y. Cao et al. Quantum algorithm and circuit design solving the Poisson equation, NJP 15 2013

Prospects for Quantum Computing at DESY

A Division-Wide Activity including Campus Partners

The CQTA will help **us all** to get started in time to benefit as soon as possible.

Lively field with extremely rapid evolution !

Many opportunities for enabling novel technology for our science!

The imminent future

Several PhD students and few PostDocs are starting now and until next year with different funding sources (InnoPool, MSCA Co-Fund...) \rightarrow nice opportunity to join, get training and start with small prototypes \rightarrow get quantum-fit.

Zeuthen received the approval for major funding (15 Mio \in in 5 y) for building a Laboratory for Quantum Computing Applications.

One BMBF short proposal for a user network to investigate and mitigate noise has been approved to submit a full proposal.

One short proposal in the framework of QuantHEP has been approved to submit a full proposal.

One ERC grant will be submitted for Quantum Annealing

Campus:

One BMBF short proposal for a hub can move on,

DLR & ITT in discussion, DLR received 740 Mio \in to enable Industry (80%) and to do QC research (20%).

Within Helmholtz more funding opportunities will show up.

Any Questions ?

DESY QT Taskforce reachable via qt-task-force@desy.de

Interested ? → Sign-up in this common email list **quantum-technologies@desy.de**