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Quantum Computing with ML Methods

. . 25
Quantum Machine Learning Hands-On Quantum
Machine Learning
1 . . . . With Python
* QML lies at the intersection between quantum computing and machine is your comprehensive
learning guide to get started RS Bl
Wlth Quantum Dr. Frank Zickert
 Usually, we're talking about using quantum computers to analyse classical Machine Learning -
data the use of quantum
computing for the
* In many cases, the most promising methods are hybrid classical/quantum f,?::j,’,‘;},f‘,‘;’;ﬁ,fﬂng
approaches algorithms.
* Both quantum annealers and digital quantum computers have been explored hitos://www.pyaml.com/
* Introductory QML textbook
* Recent review article about quantum machine learning in HEP https://iopscience.iop.org/article/10.108
* Not trying to provide an overview here; rather trying to show examples of 8/2632-2153/abc17d/meta

studies that have been performed

‘ Just try to use it as soon as possible
Don’t fall for the hype! - Frank Zickert to benefit as soon as possible !

Kerstin Borras
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Wide Variety of Opportunities to use QC with ML Methods

Sau Lan Wu, QuantHEP Seminar, https://quanthep.eu/event/quanthep-seminar-sau-lan-wu/

Our program with Quantum Machine Learning

Our Goal:

To perform LHC High Energy Physics analysis with
Quantum Machine Learning, to explore and to demonstrate
that the potential of quantum computers can be a new
computational paradigm for big data analysis in HEP, as a

proof of principle
Our present program is to employ the following 3
quantum machine learning methods

1. Variational Quantum Classifier Method

2. Quantum Support Vector Machine Kernel Method

3. Quantum Neural Network Method

to LHC High Energy Physics analysis, for example ttH (H — py)
and H—upu (two LHC flagship analyses).

Sau Lan Wu (U. Wlsconsln)_ QuantHEP Seminar November 4, 2020 5
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Challenges that can be addressed with QML

Introduction

Very diverse challenges can be adressed with Quantum Machine Learning

> Simulation (lattice QCD, parton showers, detector, ...)
> Reconstruction (tracking, jet - clustering,...)
> Physics Analyses

o . tum Al thm Z
> Anomaly Detection, Classifier SR (AR ZoC

1 H H H This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
” O pt I m I Zat I o n (SC h ed u I I n g y mus= ) email me at stephen.jordan@microsoft.com. (Alternatively, you may submit a pull request to the
repository on github.) Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms
H Algorithm: Factoring
An u p'tO'd ate (o]0 I |eCt Ion On Speedup: Superpolynomial
- Description: §iven an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor

q u a n t U m a I g O r I t h m S ca n be solves this in O(n3) time [82,125]. The fastest known classical algorithm for integer factorization is

- the general number field sieve, which is believed to run in time 200""") The best rigorously proven
fo un d h ere.: upper bound on the classical complexity of factoring is O(2™++°(1)) via the Pollard-Strassen

. . algorithm [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely

httDS / / CI U a ntU m a | Cl O rlth m ZOO . O rQ/ related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature

schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's
for the special case of factoring “semiprimes”, which are widely used in cryptography, is given in [271].
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Hadronic Structure, Fragmentation, Parton Shower
C. Bauer, W. de Jong, B. Nachman, D. Provasoli - 1904.03196 [quant-ph]
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Deeply inelastic scattering structure functions on a hybrid quantum computer

Physics Department, Brookhaven National Laboratory, Bldg. 510A, Upten, NY 11973, USA

DESY. Quantum Technologies at DESY |

Niklas Mueller,* Andrey Tarasov,'! and Raju Venugopalan®

(Dated: August 21, 2019)

DESY QT Task Force

A quantum algorithm for high energy

physics simulations
Christian W. Bauer, Wibe A. de Jong, Benjamin Nachman,
Davide Provasoli, arXiv:1904.03196 [hep-ph]

L =fi(ip +m)fi + f2(ip + m2) f2 + (8u0)*
+ 11 f10+ g2 fafad + g12 [fifo + 1] 6.

Parton Physics on a Quantum Computer

Henry Lamm,''* Scott Lawrence,''! and Yukari Yamauchi':*
(NuQS Collaboration)

! Department of Physics, University of Maryland, College Park, Maryland 20742, USA

(Dated: February 18, 2020)
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Quantum Generative Adversarial Network (GAN)

Complex MC simulation needed
(digital twins) for LHC experiments

* Computational needs are beyond
projected computational resources
of HL-LHC

* Urgent need for new methods of
fast simulation

Deep Learning allows “lsy= openlab
to replace iterative simulation

by Deep Neural Nets

(typical approach: GAN)

* Even larger gain with Quantum
Algorithms = qGAN

* Ongoing cooperation between
DESY-CERN (1 Gentner Student)

........

https://www.nature.com/articles/s41534-019-0223-2

IBM/ETH ZUrich suggested a

— R R : _
| L ! | ; Hybrid algorithm
) —| Ry(dh) Ry(h) | | R =lo) o Quantum Generator +
| L | | : Classical Discriminator
~r@p——re - - —ref :
— N ; - proposed for discrete
INITIALIZATION LAYER 1 LAYER k pI’Ob. distribution
v 2D image summed over longitudinal direction.
Calorimeter Appl Icatlon Of QGAN In H EP ¥ Normalized & Binned into 3% = 8 pixels
l L A URUIOIGR A, D0 SRIPIES . e e |
application % depth, =3 0 -
needs . r ‘
. = [nitial state normally distributed Fin | 0.7 baddinntisd psipbaniinblivk "y
ContanOUS over |0),..., |7) E £ 0o
ili = Convergence in mean image & £ o -
gObabl l Ity loss function o
new
approaches ’ E:JU :':E‘J(l I’:’(‘)g(ih 20004
ggzgltoo ebg {:} depth, = 3 & Different initializations
p = Relative entropy
Des(pl1a) -;p(x) log E ;
= Quality of result depends on initial states

Material thanks to Su Yeon Chang (EPFL, CERN openlab) https://indico.cern.ch/event/852553/contributions/4057624/attachments/2127835/3582797/QGAN.pdf

DESY
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Quantum GANs - Towards more complexity

Quantum Machine Learning as Tool for fast and precise Simulations

RWTHAACHEN '_?.':'é CERN
UNIVERSITY Iy openlab

Quantum Machine Learning for
HEP Detector Simulations
GRID 2021
Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab). Kerstin Borras [DESY, RWTH Aachen]. Dirk Kricker [DESY]

Hybrid qGAN 1D Quantum Generator Circuit

Quantum Generative Adversarial Networks

+ Hybrid quantum — classical ansatz * Only 1D 8-pixel images

+ 3 qubits (22 = 8) in quantum generator circuit

Quiantum Generator « 8 quantum states: |000), |001), |010), |011), |100), |101), [110), |111)
T ) + Modified a Qiskit qGAN model developed by IBM
= § Ry(8[e]) —T"I RY(8[3]) ]""_ Classical Classical Q q P y
: : Dat Discriminatol ; i
i Rv(6[1]) —.—T—- g Fa: PO 0 s s Quantum Generator Circuit: Gates:
: i i iFake !f
iq 2: i RY(B[2]) f——a——i “iData ii v, [1 1]
:' & St d T ®(o)) | wveos) (ot6]) ol A
Initialization : Measurement  Real _' : q1: RY(8[1]) L Tf Rv(8[4]) T RY(8[7]) Ry (0) = (Z?S( ) CZ::] % )
Evaluate Gradients & :Data : ' B (3
: U;Z:t?ei’arraam:tr;; vt 3 '-......,....‘...Am....‘......,..-' : q_2: RY(B[Z]) - uy(ﬂ[s]) - Ry(e[g]) - 100 0
e L= L | or =oz=fy 1t 2
- 000 1
{'r:.gtgnlab Florian Rehm - GRID 2021 4 {}:;(,",,,,,b Florian Rehm - GRID 2021 ]
AR A A SR A A S A A SASD .. S SAMSERAA AR A A SR A A S A .S .S s SRS SERAA
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Quantum GANs - Towards more complexity

Quantum Machine Learning as Tool for fast and precise Simulations

1D Quantum Simulator
Without Noise

Optimize Training

plx)
plx)

Training time ~ 1 day for 3000 epochs
« - speeding training up

Uniform Initialization Trained Model
* Hyperparameter optimizations:
- Good results « Higher learning rate
« Implement exponential learning rate decay
« Different generator and discriminator learning rate
« Train discriminator more often than generator

Results:

« 10x speed up in training time
- Only ~300 epochs instead of > 3000

'g%‘;nlab Florian Rehm - GRID 2021

DESY.
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Quantum GANs - Towards more complexity - Noise

Quantum Machine Learning as Tool for fast and precise Simulations

1D qGAN with Noise

Readout Noise Only

» We applied readout noise to the qubit QubitNumber | o | 1 | 2 |

measurements Readout Error 3.6% 4.7% 9.6%
Noise model from IBMq belem quantum computer

e PDF Relative Entropy FU” NOISE Model

=@~ Geantd
= qGAN
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+ We applied noise to the qubit gates (readout noise + gate level noise)
t | [ | | ] + Noise model from IBMq belem quantum computer
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Quantum GANs - Towards more complexity - Dimensions

Quantum Machine Learning as Tool for fast and precise Simulations
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2D Quantum Generator Circuit
Tree Tensor Network Architecture
q_e: T- RY(8(0)) T T RY(8(13))
q_1: l_ RY(6(1)) —ln—' RY(O(6)) }—-—{ RY(6(8)) }—.—-{ RY(6(11)) }-— RY(8(14)) T RY(6(17))
q_2: { H H RY(8(2)) = & RY(6(18))
q_3: T— RY(8(3)) |-= & RY(8(19))
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q.5: 1 H H RY(8(5)) - = RY(6(16))

DESY.

6
8 x 8 = 64 pixels =2

Only 6 qubits

Grant, E., Benedetti, M., Cao, S. et al. Hierarchical
quantum classifiers. npj Quantum Inf 4, 65 (2018).
https://doi.org/10.1038/s41534-018-0116-9
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Quantum Graph Neural Networks for Particle Physics and beyond

AUC: Area Under ROC, a measure of accuracy
for different thresholds. AUC = 1.0 means
perfect score.

Particle Tracks

AUC Comparison after 1 epoch

0.84 4 ®
: HepTrkX-hid10
L HepTrkX-hid5
0.82 1 HepTrkx-hid
JMERA-hid1
0.80 JTN-hid1
Results: 0.78
« A comparison with Hep.TrkX after a single epoch 2 0.76-
shows that the QGNN model performs similarly. i
-+ Better AUC possibly achievable by future _— |
improvements: JMps-hid1
. . . 0.70 | A
better hardware, more qubits, more training time —4— dassical
0.68 -+ ® quantum
102

# Parameters

Material thanks to Cenk Tuystiz (METU,CERN openlab) https://indico.cern.ch/event/852553/contributions/4057625/attachments/2127652/3582465/IML_2020_cenk_tuysuz.pdf
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Wide Variety of Opportunities to use QC with ML Methods

Heather Gray, CERN Academic Training, https://indico.cern.ch/event/870513/

Outline for Today

« Applications of quantum computing in HEP

* Simulation
* Parton shower correlations
+ Lattice QCD
* Reconstruction
* Particle tracking
* Analysis
* Higgs analyses
» SUSY search

Progress has been very rapid here...
Relying on a mix of published and unpublished
results
My apologies to anyone who's work I've left out
or don’t do justice to

DESY. Quantum Technologies at DESY
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TLW‘}WTLH%

Track reconstruction studies

5 * Quantum Annealing x 2
* Quantum Associative Memory
* Quantum Hough Transform

* Quantum Graph Neural Network

Incomplete list of other studies for HEP

* Quantum gate optimization for scientific applications: https://arxiv.org/pdf/

2102.10008.pdf

* Simulating collider physics on QC: https://arxiv.org/pdf/2102.05044.pdf

* Vertexing with QA: https://arxiv.org/pdf/1903.08879.pdf

* QA for jet clustering: https://journals.aps.org/prd/abstract/10.1 103/
PhysRevD.101.094015

* Unfolding with QA: https://link.springer.com/article/10.1007/
|HEPI1(2019)128

* Unfolding to mitigate readout errors: https://www.nature.com/articles/

s41534-020-00309-7

12 May 2021
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Quantum Technology at DLR

2 Applications of Quantumtechnologies at DLR GSOC Dr. Andreas Sporl

DLR general:

Ca. 8000 people,
50 institutes, 26 sites

QuantumTech DLR:

DLR-QT (Ulm) Quantum Technologies

DLR-SI (Hannover)
Satellite Geodesy & Inertial Sensing

DLR-SC (K&In)
Simulation & S/W TechlLab

DLR-TT (Stuttgart)
Technical Thermodynamics

DLR-KN (Oberpfaffénhofen)
Communications & Navigation

DLR-MF (Oberpfaffenhofen)
Remote Sensing

DLR-RB (Oberpfaffenhofen)
German Space Operations Center

i DLR
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Quantum Computing at DLR

Example from DLR

DESY.

11 /36

i DLR

Applications of Quantumtechnologies at DLR GSOC Dr. Andreas Sporl

Quantumalgorithms in Satellite operations:
QuATHMOo0S: Anomaly detection via QuantumMachinelLearning

TEETY ; wap |

W MHLW flv'l .W mm i M }“W }M“m m I m “M

TENTY | wabsscria (14441

Telemetry data is represented in a feature vector space. A model is
trained by nominal data. Outliers are detected to point out
anomalies.

Applicable Quantum Algorithms

Quantum Principle Component Analysis
Quantum Support Vector Machines
Challenge: How to get telemetry data to the quantum computer?
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QC Opportunities from the Particle Accelerators Perspective

Quantum algorithms in particle beam dynamics and ML

qf d b d qd sd qd d b d qf sf

¢ ; S 1 1 Length, m
W, v, [
> W x
1
|
1
|

To be noted:

Our current interest within the M
mission is to leverage ML and HPC

for design, operation and automation of
(electron) accelerator facilities.

rupole drift

« Example application: regularization techniques for training of DNNs for control and modelling of
accelerators based on QUBO

« Open question for R&D: beam dynamics simulations: classical many-body systems on quantum
computers?
Synergies with FH/FS/AP

Y. Cao et al. Quantum algorithm and circuit design solving the Poisson equation, NJP 15 2013
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Prospects for Quantum Computing at DESY

Center for Quantum Technology Applications

CQTA
Zeuthen Hamburg
Quantum Simulations Photon Science

Algorithms & Methods for Quantum Materials and

Benchmarking Transfer for Quantum Devices

Training and Education

Access to Quantum Outreach Quantum Machine Learning

Computers Quantum Simulations

Quantum Sensing

Quantum Sensing ﬁmi
DESY.

The CQTA will help us all to get started
in time to benefit as soon as possible.

Lively field with extremely rapid evolution !

Many opportunities for enabling novel
technology for our science!

DESY

The imminent future

Several PhD students and few PostDocs are starting now and until next
year with different funding sources (InnoPool, MSCA Co-Fund...)

—> nice opportunity to join, get training and start with small prototypes
- get quantum-fit.

Zeuthen received the approval for major funding (15 Mio € in 5y) for
building a Laboratory for Quantum Computing Applications.

One BMBF short proposal for a user network to investigate and mitigate
noise has been approved to submit a full proposal.

One short proposal in the framework of QuantHEP has been approved to
submit a full proposal.

One ERC grant will be submitted for Quantum Annealing

Campus:

One BMBF short proposal for a hub can move on,

DLR & ITT in discussion, DLR received 740 Mio € to enable Industry (80%)
and to do QC research (20%).

Within Helmholtz more funding opportunities will show up.
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Any
Questions ?

DESY QT Taskforce reachable via qi-task-force@desy.de
Interested ? > Sign-up in this common email list quantum-technologies@desy.de



