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Quantum computing: why

• qubit = 2-level quantum system |0〉, |1〉
→ superpostion state: |qubit〉 = a|0〉+ b|1〉, a2 + b2 = 1

→ 2-level atom, Josephson junction,
polarized photons, ...

• 2 classical bits
(bit1,bit2): 4 different states: (0,0),(1,0),(0,1),(1,1)

→ only one state realized at a given time

• 2 qubits
|qubit1, qubit2〉: 4 different basis states: |0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉
→ can be realized simultanenously:

|Ψ〉 = 1
2|0, 0〉+ 1

2|1, 0〉+ 1
2|0, 1〉+ 1

2|1, 1〉
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Quantum computing: why

• a general (2 qubit) quantum state is superposition

|Ψ〉 = α|0, 0〉+ β|1, 0〉+ γ|0, 1〉+ δ|1, 1〉 , |α|2 + |β|2 + |γ|2 + |δ|2 = 1

– can store abritrary information
– computation speed independent from number of qubits

• need to measure α, β, γ, δ

→ count number of states |0, 0〉, |1, 0〉, |0, 1〉|1, 1〉 in repeated experiment

• computational speed

→ quantum supremacy: 50 qubits → 250 states

→ classical optimization problems (e.g. particle track reconstruction)

→ demonstrated by google experiment
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Entanglement

• entaglement → allows operations which are classically impossible

• example:

– superdense coding (infamous Alice and Bob experiment)

• realization of entanglement
→ CNOT gate on | qubit1︸ ︷︷ ︸

control

qubit2︸ ︷︷ ︸
target

〉

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉
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Quantum computing applications

• problems extremely hard or inaccessible classically

– quantum field theories
→ very early universe
→ matter-antimatter asymmetry
cooperation: DESY, IQOQI (Innsbruck)
IQC& Perimeter (Waterloo)

– condensed matter physics:
→ superconductivity: Hubbard model away from half-filling
→ topological systems

– chemistry
– atom and molecule spectra
– material science

• problems in biology, chemistry, materials, ...
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Quantum computing applications

• classical optimization problems

– aerospace, e.g. flight gate assignment
DESY-DLR collaboration

– logistics
– traffic
– Einstein telescope
– particle tracking
→ Higgs tagging
DESY-CERN Openlab cooperation
→ electron-positron identification in LUXE experiment

problems share the same or very
similar structure of cost function

Einstein Research Unit Review. Perspectives of a quantum digital transformation: Near-term quantum computational devices and quantum processors 

WP 6: NOVEL APPLICATIONS
IN QUANTUM CHEMISTRY AND HIGH-ENERGY PHYSICS

b-quark jets

Calorimeter

tracker

ATLAS Experiment at LHC, CERN.

HL-LHC: data taking until at least until 2037.

Tracking, b-jet identification
and Higgs ID essential.

200 collisions at same time

Trackers: High occupancy !!

Computational challenge to find tracks of particles.

• more examples (qgan, ...) → Kerstin Borras
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Classical optimization problem: flight gate assignment

• Find shortest path between two connecting flights

xiα =

{
1, if flight i ∈ F is assigned to gate α ∈ G
0, otherwise

x ∈ {0, 1}F⊗G → x binary variable → x ∈ {−1, 1}F⊗G

eigenstate of third Pauli matrix σz

H =
∑n
j=1Qjjσ

z
j +

∑n
j,k=1
j<k

Qjkσ
z
j ⊗ σzk

www.DLR.de Chart 8 > DLR > TM, EL and TS > Quantum Heuristic Algorithms for Hard Planning Problems from Aerospace Research

Flight Gate Assignment - Decision Variable

Gate 1 Gate 2 Gate 3 Gate 8 Gate 9 Gate 10

Gate 20Gate 19Gate 18Gate 13Gate 12Gate 11

...

...

Gate

Flight i

Decision variable

xi =

(
1 if flight i is assigned to gate

0 otherwise

• Qij coeffecients specific for a real given airport

• Goal: find ground state (shortest path)

• contraints:

– every flight can only be assigned to a single gate
– no aircraft can be at the same gate at the same time
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Hamiltonian formulation

• Quantum computing uses Hamiltonian approach

• search for wavefunction |Ψ >

|Ψ >=
∑
i1,i2,··· ,iN Ci1,i2,··· ,iN |i1i2 · · · iN >

Ci1,i2,··· ,iN coefficient matrix with 2N entries

⇒ exponential scaling → becomes impossible ... very fast
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Solution: Variational Quantum Simulation

• start with some initial state |Ψinit〉
• apply succesive gate operations ≡ unitary operations eiSθ

• examples for S: Pauli matrices σx, σy, σz, parametric CNOT

|Ψ(~θ)〉 = eiS(n)θn . . . eiS(1)θ1|ψinit〉

• with Rj := eiS(j)θj cost function evaluated on quantum computer

C :=

〈
ψinit

∣∣∣∣(∏n
j=1Rj

)†
H
∏n
j=1Rj

∣∣∣∣ψinit

〉

• goal: minimize C over the angles ~θ
→ obtain minimal energy, i.e. ground state

• minimization performed classically (hybrid classical-quantum approach)
← also possible on quantum computer itself
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Finding ground state: Variational Quantum Simulation

(0) evaluate cost function for initial parameters ~θinit on quantum computer

C(~θinit) :=

〈
ψinit

∣∣∣∣(∏n
j=1Rj(

~θinit)
)†
H
∏n
j=1Rj(

~θinit)

∣∣∣∣ψinit

〉
↓

(1) give to classical computer → optimize over ~θinit
e.g. gradient descent, baysean optimization, ...
→ obtain new set of parameters ~θnew

↓
(2) give to quantum computer evaluate new cost function

C(~θnew) :=

〈
ψinit

∣∣∣∣(∏n
j=1Rj(

~θnew)
)†
H
∏n
j=1Rj(

~θnew)

∣∣∣∣ψinit

〉
↓

(3) give to classical computer → optimize over ~θinit and ~θnew, ...

→ obtain new set of parameters ~θnew

(4) go to (2) until converge, i.e. find minimum
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Variational quantum simulation

y
x

• evaluate cost function 〈Ψ(~θ)|H|Ψ(~θ)〉
on quantum device

• feedback loop

• optimize over parameters ~θ
on classical computer
→ give back new set of ~θ
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VQS for FGA
(L. Funcke, T. Hartung, S. Kühn, T. Stollenwerk, P. Stornati, K.J.)

• use variational quantum simulation to find ground state

– use 6 qubits on simulator
– overlap: 〈ΨV QS|Ψexact〉
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• Remarks:

– Hamiltonian is diagonal → classical optimization
– QC helpful through principles of superposition and entanglement?
– the same Hamiltonian can be used in particle track reconstruction
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A condensed matter physical model

• 1-dimensional Heisenberg model

H =
∑N
i=1 β [σx(i)σx(i+ 1) + σy(i)σy(i+ 1) + σz(i)σz(i+ 1)] + Jσz(i)

• Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

• nearest neighbour interaction, tensor products

• Hamiltonian expressed in Pauli matrices → suitable for quantum computer

• shows phase transitions, critical behaviour, non-trivial spectrum

12



Using the simulator

• Simulator with no noise

• IBM’s Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm

• dashed line exact result

(figure by Xiaoyang Wang)

• 3 qubits
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Switching on noise

• Simulator with noise

(figure by Xiaoyang Wang)

• 3 qubits

• measurement error → cannot find ground state

• need of error mitigation/correction
correcting readout error
→ L. Funcke, T. Hartung, S. Kühn, P. Stornati, X. Wang, K.J.,arXiv:2007.03663
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General measurement error mitigation in NISQ area
(L. Funcke, T. Hartung, S. Kühn, P. Stornati, X. Wang, K.J.,arXiv:2007.03663)

• generated state |Ψ(~θ)〉 is a bit string |00110011100101〉
• false measurement
|0〉 → |1〉 with probability p1
|1〉 → |0〉 with probability p2

• setting (for simplicity) p1 = p2 = p

• measuring s-times:
get k correct and s− k
incorrect results distributed as

f(k, s, 1− p) =

(
s
k

)
(1− p)kps−k

• recompute exact energy
from noisy measurments

• can be generalized to
arbitrary number of qubits

• only readout noise!
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example: transverse ising model
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Error mitigation

• Simulator with error mitigation

(figure by Xiaoyang Wang)

• 3 qubits

• works well → find ground state

• perspective for larger number of qubits
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Inside a Quantum Computer

• Shielded to 50,000 times less
than Earth’s magnetic field

• In a high vacuum: pressure is 10 billion
times lower than atmospheric pressure

• Cooled 180 times colder than
interstellar space (0.015 Kelvin)

→ prevent decoherence

• qubits based based on Josephson junction

• application of unitary gate operations

→ generate entanglement(Rigetti Aspen)

• reaching 128 qubits this year

• IBMQ: Free 14 qubits, 400 qubits 2021, 1000 qubits 2023

• D-Wave: 2000 qubits → 5000 qubits
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Quantum Computing: how?

• python programming language

→ company provides quantum libraries

• very convenient setup

→ simulator runs on your local machine

→ hardware usable through quantum cloud service

→ build on reservation system

• documentation, tutorials and examples availabe on website

→ you can start now

18



Some publications

• Zeta-regularized vacuum expectation

values from quantum computing simulations

T. Hartung and K.J., J.Math.Phys. 60 (2019) 9, 093504
• Measurement Error Mitigation in Quantum Computers

Through Classical Bit-Flip Correction

L. Funcke, T. Hartung, S.Kühn, P. Stornati, K.J., arxiv:2007.03663
• A resource efficient approach for quantum and

classical simulations of gauge theories in particle physics

J.F. Haase, L. Dellantonio, A.Celi, D.Paulson, A. Kan, K.J.,

C.A. Muschik, Quantum 5 (2021) 393
• Towards simulating 2D effects in lattice gauge theories on a quantum computer

D. Paulson, L. Dellantonio, J.F. Haase, A. Celi, A. Kan, A. Jena,

C. Kokail, R. van Bijnen, K.J., P. Zoller, C. A. Muschik, accepted in PRX Quantum
• Simulating Lattice Gauge Theories within Quantum Technologies

M.C. Banũls et.al., Eur.Phys.J.D 74 (2020) 8, 165
• Dimensional Expressivity Analysis of Quantum Circuits

L. Funcke, T. Hartung, S.Kühn, P. Stornati, K.J., Quantum 5 (2021) 422
• Flight gate assignment with variational quantum simulations

L. Funcke, T. Hartung, S.Kühn, P. Stornati, T. Stollenwerk, K.J., in preparation
• A measurement-based variational quantum eigensolver

R. Ferguson, L. Dellantonio, A. Al Balushi, W.Dür, C. Muschik, K.J., Phys.Rev.Lett. 126

• Investigating a 3+1D Topological θ-Term in the Hamiltonian Formulation of Lattice Gauge

Theories for Quantum and Classical Simulations

A. Kan, L. Funcke. S. Kühn, L. Dellantonio, C.A. Muschik, K.J., to appear in PRD
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