
# Future Dark Photon searches at the ILC

#### FIPS decays in the dimuon spectrum



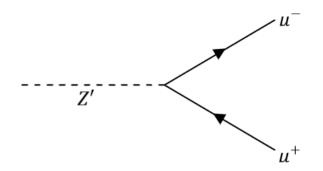
Source: ILC technical design report, Behnke et al., 2013

**Josh Greaves** 

Lund University

08/09/2021






- Project aims
- **FIP** motivation
- Simulation overview
- Familiarizing myself
- Cuts on backgrounds
- Leptonic and Hadronic backgrounds
- B Tagging J/Psi
- Exclusion/Detection
- Weights/ beam polarization
- **Statistics**



#### **Project Aim**

- Study 'Dark Photon' flavor of FIPS at ILC
- Dark photon (Z') decays into SM particles specifically muons
- Study limits on detecting a peak in the DiMuon spectrum at ILC
- Look for narrow peak; primarily against dominant background from Z resonance
- Estimate background rates from full detector simulation data (DST files) using ILCSoft/LCIO in ROOT framework
- Discovery and exclusion potential of ILC for this scenario using SGV fast detector simulation signals (Whizard)





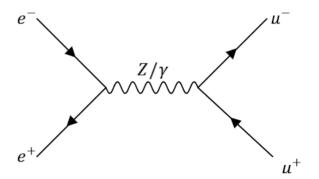



Fig 2 - Dominant background: muon pair production from Z resonance







# Dark Matter – Motivation for 'FIP' search

#### • CMB

- Galaxy dynamics
- Relic abundance: **'Freeze out'** point depends on the particles mass, and cross section.
- Number one candidate: WIMPs. Coupling weakly
- Massive Astrophysical Compact Halo Objects (MACHOs)
- Also, Feebly Interacting ParticleS (FIPS), coupling somewhat weakly (not as weak as Weak interaction)
- Direct detection DM scatters/interacts directly
- Indirect detection (ILC) reconstructed peaks in mass spectrum

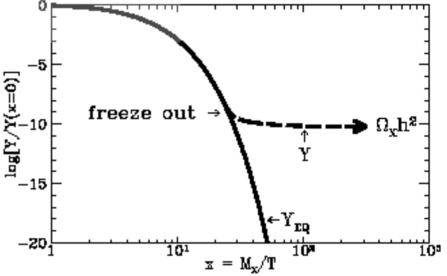



Fig 3 - Log Ratio number density (Y) at (T) to original density, as temperature T decreases with expansion. [Source: https://ned.ipac.caltech.edu/level5/Kolb/Kolb5\_1.html]



#### Dark Matter – Flavour of FIPS

Lund UNIVERSITY

- Requirements:
  - Not charged under strong force
  - Has not been excluded/discovered
  - Lighter than 10GeV (Relic abundance)

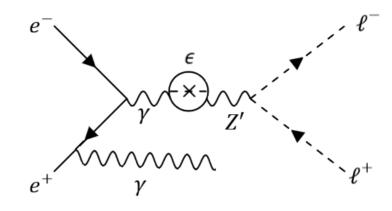
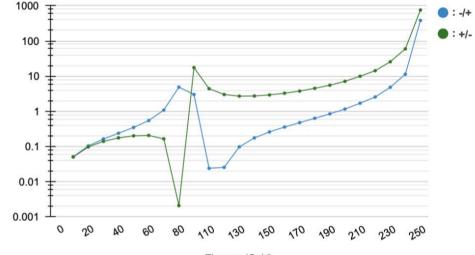



Fig 4 – Feynman diagram illustrating the production of  $\mathsf{Z}'$ 

- New proposed dark gauge boson (Z') probing into dark sector (not dark matter itself)
- Does not interact through SM gauge interaction new U(1) gauge symmetry
- Experimental search for an ISR photon and a Z'
- $e^+e^- \rightarrow \gamma_{ISR}$  Z', where Z'  $\rightarrow \ell^+ \ell^-$
- Focus on muon pair decay:  $Z' \rightarrow \mu^+ \mu^-$




#### \* SOURCE: Curtin, D., Essig, R., Gori, S. and Shelton, J., 2015. Illuminating dark photons with high-energy colliders. Journal of High Energy Physics, 2015(2).

Cross-section (fb)

#### Signal generation - Whizard

- Steering file (.sin) to produce signal distributions
- Utilizes Unified Feynrules Output (UFO) files: model for automated matrix element generators\*
- Both eLpR and eRpL polarizations
- Center of mass energy 250 GeV
- Z' mass from 10GeV 250GeV
- Z boson mass interference around 90GeV
- Resonance at 250GeV causes highest  $\boldsymbol{\sigma}$
- Cross section also scales with some power of η (coupling strength)

Cross-sections with different Z' masses



Z' mass (GeV)

Fig 7 – Cross section varying with Z' masses for polarization left (blue), right (red)





# Signal generation – SGV fast detector simulation

0 **–** 148

152

Fig 8 – invariant mass of muon pairs at generator Truth level

150

151

invariant mass (GeV)

149

0 **–** 148

Fig 9 – invariant mass of muon pairs produced with SGV

150

149

151

invariant mass (GeV)

152

- Signal is small narrow peak in dimuon spectrum
- Z' to di-lepton resonance is expected to be narrower than detector resolution



#### Background – full detector simulation

- Full Monte Carlo simulation -> DST files
- DST contain collections of reconstructed event data
  - Particle objects
  - Vertex data
- DST to miniDST by 'Marlin' processor -> provides additional collections
  - Isolated leptons
  - Jet collections





#### Dimuon backgrounds: 2f\_leptonic vs 4f\_semileptonic



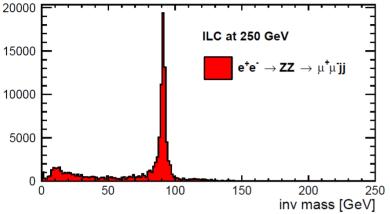



Fig 3 - Double Z resonance pair production of muons with 2 quarks producing hadronic jets

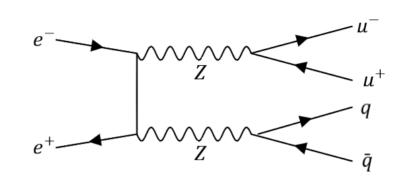



Fig 4 - Corresponding semi-leptonic Feynman diagram

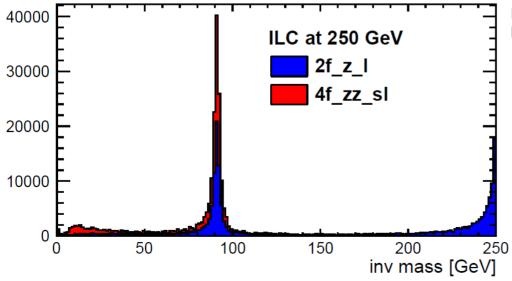



Fig 5 - 2 fermion leptonic spectrum stacked with 4 fermion lepton + QCD spectrum (semi-leptonic)



#### Another QCD background – 2 fermion hadronic – 2f\_z\_h



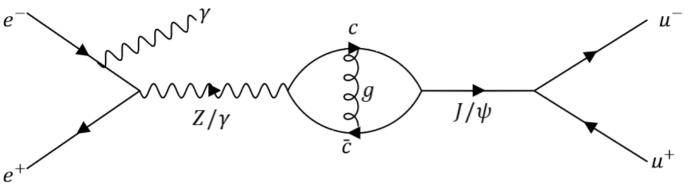
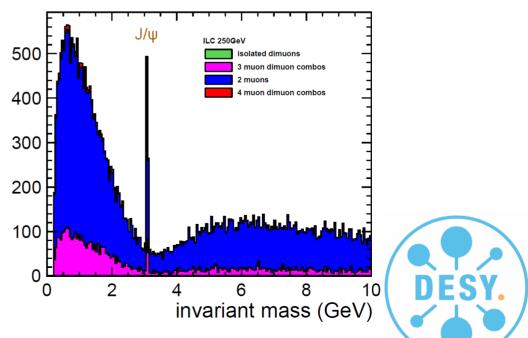




Fig 8 - Extended Feynman diagram showing ISR emission -> J/Psi decay into dimuon

- Mini DST files: 2f\_z\_h
- JPsi decays into dimuon with BR: ~6% [Source: PDG]
- b-quarks decay into charm OR up quarks

Fig 10 - Implemented B-Tagging cut to all DiMu PFO

combinations



### Signal exclusion and detection - Weights



- Luminosity  $L = \frac{1}{\sigma} \frac{\mathrm{dN}}{\mathrm{dt}}$
- => Number of events is given by  $N = \sigma * L$ , where this L is the *integrated luminosity*.
- Known number of events in a process; must scale what is simulated
- Each event is weighted:  $W = \frac{\sigma * L}{N}$ .
- Correctly scaled number of events in each bin



### Signal exclusion and detection - Polarization

- Example beam: **eLpR** is **NOT** 100% left polarized electrons and right polarized positrons
- Electrons polarized to 0.8, positrons polarized to 0.3
- Convention Right polarization = 1, Left polarization = -1
- Electrons:  $(0.9 \times 1) + (0.1 * (-1)) = 0.8 \rightarrow 90\%$  electrons have desired polarization
- Positrons:  $(0.65 \times 1) + (0.35 * (-1)) = 0.3 \rightarrow 65\%$  positrons have desired polarization
- LL and RR are disallowed by spin conservation (spin 1 bosons, spin 0 initial state)
- Scale Luminosities:
  - $L_{LR} = L \times 0.9 \times 0.65$
  - $L_{RL} = L \times 0.1 \times 0.35$
  - Num events =  $\sigma_{LR} \times L_{LR} + \sigma_{RL} \times L_{RL}$





#### Signal exclusion and detection – Statistics

Lund UNIVERSITY

- Monte Carlo Simulation -> Number of events is a Poisson Distribution
- Poisson distribution: Probability of a given number of independent events occurring with a known average rate/expected value (based on SM)
- Poisson tends to Gaussian when variable is large (Central limit theorem)
- Minimum Discoverable:

How **large** must **signal** be for observation not to be explained by an **upward fluctuation** in expected **background <b>**?

• Minimum Excludable:

How **small** can the number of signal events **s** be such that observation represents too much of a **downward fluctuation** in expected number of events **<s+b>**?



# Signal exclusion and detection – Hypothesis testing

#### First test, **Discovery**

- H<sub>0</sub>: No signal present (s=0)
- H<sub>1</sub>: Signal found ( s>0 )
- If N > x, reject H<sub>0</sub>, **discover signal**
- Otherwise: accept H<sub>0</sub>, no discovery
- Requirement if  $H_0$  true:  $P(N>x) = \frac{1}{1744278}$
- Assume H<sub>0</sub> True: Let  $R = \frac{N-b}{\sqrt{b}} \implies P(R>x') = \frac{1}{1744278} \implies x'=5$
- Reject  $H_0$  if  $N > b + 5\sqrt{b}$
- If H<sub>1</sub> is true => <N> = <s+b> =>  $s > 5\sqrt{b}$  => Discovery





#### Signal exclusion and detection – Hypothesis testing

#### Second test, Exclusion

- H<sub>0</sub>: Signal present ( s>0 )
- H<sub>1</sub>: Signal excluded (s=0)
- If N < x, reject H<sub>0</sub>, exclude signal
- Otherwise: accept H<sub>0</sub>, signal is present
- Requirement if  $H_0$  true:  $P(N < x) = \frac{0.05}{2}$
- Assume H<sub>0</sub> True: Let  $R = \frac{N (b + s)}{\sqrt{(b + s)}} \implies P(R < x') = 0.025 \implies x' = -2$
- Reject  $H_0$  if  $N < (s+b) 2\sqrt{(s+b)}$
- If H<sub>1</sub> is true => <N> = <b> =>  $s > 2\sqrt{(s+b)}$  => Exclusion

These tests allow us to determine **s** and **b** for each Z' mass How much does the signal need to be scaled to be within limits?





#### Weighted signal on background – generator level Z'=150GeV



250 300 200 MC Background MC Background MC Signal MC Signal 150 200 100 100 50 Ω 0 149.96 149.98 150 150.02 150.04 149.8 149.9 150 150.2 150.1 invariant mass (GeV) invariant mass (GeV)

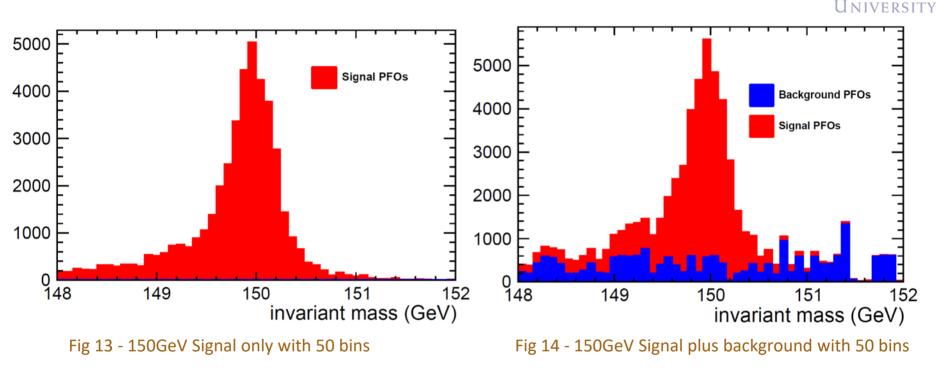

Fig 11 - Z'=150GeV with a window size of 200MeV either side. **787 signal events and 2084 background events** 

Fig 12 - Z'=150GeV with a window size of 50MeV either side. **669 signal events and 498 background** events

DESY.

AT +/-50MeV: s>  $\sim$ 46.68 for DISCOVERY if there is signal, or s > 111.58 for EXCLUSION if there is no signal.

# Weighted signal on background – fast detector example



Conclusion: 43024 signal muons 20269 background muons Signal must be > 712.34 for a **DISCOVERY** if there is a signal Signal must be > 286.94 for **EXCLUSION** if there is no signal



#### Preliminary analysis – optimal window size

#### **150GeV Z' optimizing window size at the generator level**

| Width | Signal  | BKG     | s/sqrt(s+b) | Width | Signal  | BKG     | s/sqrt(s+b) |
|-------|---------|---------|-------------|-------|---------|---------|-------------|
| 0.2   | 725.976 | 1025.15 | 17.3485     | 0.02  | 546.058 | 102.515 | 21.4417     |
| 0.18  | 717.913 | 922.639 | 17.7246     | 0.018 | 539.234 | 92.2639 | 21.4581     |
| 0.16  | 706.745 | 820.123 | 18.0868     | 0.016 | 529.468 | 82.0123 | 21.4116     |
| 0.14  | 695.729 | 717.608 | 18.5062     | 0.014 | 519.541 | 71.7608 | 21.3656     |
| 0.12  | 683.934 | 615.092 | 18.976      | 0.012 | 508.682 | 61.5092 | 21.3028     |
| 0.1   | 669.363 | 512.577 | 19.4699     | 0.01  | 494.572 | 51.2577 | 21.169      |
| 0.08  | 650.899 | 410.062 | 19.9831     | 0.008 | 475.664 | 41.0062 | 20.9264     |
| 0.06  | 628.26  | 307.546 | 20.5374     | 0.006 | 453.317 | 30.7546 | 20.6038     |
| 0.04  | 597.546 | 205.031 | 21.0925     | 0.004 | 418.861 | 20.5031 | 19.9829     |
|       |         |         |             | 0.002 | 337.444 | 10.2515 | 18.0968     |



Table 1 - Optimal width = 18MeV





- Investigate optimum window size post fast detector simulation
- Plot all other Z' energies with complete 2f\_leptonic DST files
- Calculate tolerances/limits for all Z' energies when using **all** background files
- Add other less dominant backgrounds in to see how tolerances are affected
  - Hadronic
  - 4 fermion leptonic





#### **Questions?**

