Patrick L.S. Connor (IEXP & CDCS)

CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-27 14:40:45.336640 GMT Run / Event / LS: 281707 / 1353407816 / 851

CDCS Opening Symposium, 27-April, 2022 Precision measurements in High Energy Physics: correlated and uncorrelated uncertainties

Motivation (1)

- Kepler & Brahe: planets' orbits are ellipses
- Newton: perihelion precession
- Le Verrier: residual discrepancy of Mercury's orbit of 42.980±0.001" per century
- **Einstein**: tiny (but significant!) gap between experimental observations and prediction explained by General Relativity

Uncertainties tell you how much you can trust your data

Motivation (2)

CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

p_{Tiet} [GeV]

Uncertainties of such spectra require a sophisticated description.

- Bin-to-bin fully correlated, partially correlated, and fully decorrelated from bin to bin.
- Typically O(10) different sources of systematic uncertainties.
- Direct impact on extraction of fundamental physics quantities such as the α_s .

CDL1

Goal & Outline

CDI 1

Discuss tools for more or less broad application:

- 1) DAS: Das Analysis System
 - Jet analysis in context of the CMS Collaboration

2) RAN: Refinement Adversarial Networks

- By-pass computing-demanding simulation of detector with Geant4
- **3) Step**: Smoothness Tests based on Expansion of Polynomials
 - Investigate the quality of the statistical description of a differential measurement
- 4) Teddy: Treat Entries ouf of the Diagonal DecentlY
 - Extract high-level distributions from histograms with complex uncertainty schemes

Typical analysis strategy

CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

CDL1

DAS (with CMS colleagues)

- Optimised for **debugging**
 - Event loop based

CDL1

- **Factorising** all steps
- Accounts natively for systematic variations at event level
 - •• Vectors of weights and factors
- Currently dedicated to CMS jet analysis exclusively
 - Modular design makes it easily extendable...
 - Essentially depends on demand and person power

Patrick L.S. Connor

CDCS CENTER FOR IN NATURA

RAN (with TUHH and IEXP colleagues)

CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

- Replace full simulation based on Geant4 by fast simulation based on higherlevel phenomenological models (e.g. Delphes)
- **Refine** obtained simulation with adversarial networks
- Interface with DAS ...?

Promising approach to improve the model dependence of the data reduction!

CDL1

STEP (1) (with Radek Zlebcik)

• Typical jet measurements span over several orders of magnitude.

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} = \frac{1}{\mathcal{L}} \frac{N_{\mathrm{jets}}^{\mathrm{eff}}}{\Delta p_{\mathrm{T}}\,\Delta y}$

- Even *counting* jets is not trivial, while we typically target %-level precision.
- Residual artifacts in the spectrum may render the data difficult to fit.
- Issues may often be spotted only after the data have been published.
- \rightarrow find build a function with same shape

CDL1

Patrick L.S. Connor

p_JET (GeV/c)

- Fit with and divide by an ad hoc, (nearly) agnostic, smooth function $f_n(p_{\rm T}) = \exp\left(\sum_{i=0}^n b_i T_i \left(2 \frac{\log p_{\rm T}/\log p_{\rm T}^{\rm min}}{\log p_{\rm T}^{\rm max}/\log p_{\rm T}^{\rm min}} - 1\right)\right) \qquad \qquad \chi_n^2 = \min_{b_i \le n} \left[\left(\mathbf{x} - \mathbf{y}_{b_i \le n}\right)^{\sf T} \mathbf{V}^{-1} \left(\mathbf{x} - \mathbf{y}_{b_i \le n}\right)\right]$
- Track down possible artifacts introduced in the data reduction (e.g. trigger)

Patrick L.S. Connor

STEP (3) (with Radek Zlebcik)

- Iterative fit procedure with early stopping criterion based on cross validation.
- Two sets of 10k replicas (fake data generated from statistical properties of the original spectrum) are produced:
 - training replicas are used to run the fit;
 - validation replicas are used to determine the level of overfitting.
- Not more than 10% of the validation replicas should have better χ^2 than the training replicas.

2111.09968v2

- Apply **transformation** on distributions with complex correlations
 - ~ e.g. ratio of inclusive 2- and 3-jet cross sections
 - Many systematic effects cancel \rightarrow stronger sensitivity to α_s
- Normalise 2D distribution in bins
 - $_{\star \star}~$ e.g. jet substructure variable λ in bins of $p_{_T}$
 - Factour out irrelevant physics effects
- Extract a fraction, etc. etc.
 → generic approach based on MC techniques

 $\frac{1}{N(p_{\rm T})} \frac{{\rm d}^2 \sigma}{{\rm d} p_{\rm T} {\rm d} \lambda} \quad \text{where} \quad N(p_{\rm T}) = \frac{{\rm d} \sigma}{{\rm d} p_{\rm T}}$

CDL1

Patrick L.S. Connor

11

TEDDY (2) (with Radek Zlebcik)

CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

- We want to apply y = f(x)
 - ~ x has covariance matrix V

$$\boldsymbol{\theta}_n = \mathbf{f} \left(\mathbf{x} - \mathbf{R}^{-1} \boldsymbol{\delta'}_n \right) \quad ext{with} \quad \delta'_{n,i} \sim \mathcal{N} \left(0, \sqrt{\max(0, k_i)} \right)$$

• The covariance matrix of y is simply obtained by MC integration:

$$\mathbf{W} = \left(\frac{1}{N}\sum_{n=1}^{N}\boldsymbol{\theta}_{n} \cdot \boldsymbol{\theta}_{n}^{\mathsf{T}}\right) - \frac{1}{N^{2}}\left(\sum_{n=1}^{N}\boldsymbol{\theta}_{n}\right) \cdot \left(\sum_{n=1}^{N}\boldsymbol{\theta}_{n}\right)^{\mathsf{T}}$$

 \rightarrow illustrated with partial normalisation of H1 dijet measurement

Patrick L.S. Connor

CDL1

- Statistical and systematic uncertainties are crucial in measurements.
- When designing the analysis software, they should be accounted for from the very beginning → DAS
- Ongoing project with adversarial networks to help produce very large data sets and better cover model uncertainties.
- Generic tools to deal with bin-to-bin partial correlations
 → STEP & TEDDY.

Thanks for your attention!

CDL1