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Overview

> What’s European XFEL.

> Diagnosis and predictive maintenance tasks on accelerator controls.

> Example: Quench detection with a purely data-driven model.

> Example: Anomaly detection on beam position monitors.
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European XFEL - Overview

The European XFEL:

> Consists of a superconducting cavities that boosts electrons.

> The electrons are then directed through specially arranged magnets (undulators).

> Then they emit extremely short and intense X-ray flashes.

> These X-ray flashes are then distributed to three beamlines (SASE).
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Data-Driven Predictive Maintenance on European XFEL

> Thousands of devices are involved in EuXFEL.

> Many components are operating in extreme conditions (radiation, heat...).

> At any moment, any component can fail.

> When a component fails, it can lead to undesired downtime.
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Examples

(1) LLRF Cavities

> Monitoring signals from cavities.

> Detecting quenches and other

faults.

(2) Orbit Monitoring

> Analyzing electron orbits in SASEs.

> Various types of problems are indicated by

variations on orbits.
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(1) Superconducting Low-Level Radio Freq. Cavities

Cavities

> The superconducting LLRF cavities

accelerate electron bunches.

> The electrons are accelerated by

alternating electric fields.

> Trajectory is manipulated via a

magnetic field.

> Superconductivity is important to

maintain the efficiency.

> Very low temperatures (near

absolute zero) are needed for

superconductivity.

[Wikipedia]
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(1) Monitoring Superconducting LLRF Cavities

Healthy Quenching
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> We record an envelope (phase, amplitude) of three signals - probe, forward and

reflected signals.

> Each signal consists of a pair of 1820 values (amplitude, phase) per pulse.

> Quench (right) means a loss of superconductivity in a cavity, which has a significant

effect on the quality factor.
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(1) Data-Driven Monitoring of Superconducting LLRF
Cavities

h2=LSTM(h1)
input=256, output=256

φ=Linear(h2)
input=256, output=64

s = ‖φ (h2)− c‖22
input=64, output=1

h1=LSTM(x)
input=1092, output=256︸ ︷︷ ︸

fθ(x)

> A RNN is assigning a score to series of cavity pulses.

> Each datum x (pulse) consist of (probe, forward and reflected signals).

> We have a disproportionately smaller dataset with faults (1300 faults) and (almost)

unlimited access to healthy data.

> Semi-supervised anomaly loss [Ruff(2019)]

L (θ) = ‖fθ(x)− c‖y2 + ‖fθ(x)− c‖2 where y ∈ {−1, 1}.
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Semi-Supervised Anomaly Loss

Semi-supervised anomaly loss [Ruff(2019)]

L (θ) = ‖fθ(x)− c‖y2 + ‖fθ(x)− c‖2 where y ∈ {−1, 1}.

y = 1 y = −1 (anomaly)
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(1) Results - Quenches
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(1) Feature Space - TSNE of fθ(x)

Healthy / Faulty Healthy / Healthy
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(2) Orbit Monitoring

Assumption

There is a systematic pattern shown in orbits given by the physical construction of

EuXFEL.
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Orbit Monitoring - FODO Lattice

[Wendt(2011)]

[Holzer(2006)]
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(2) Orbit Monitoring
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(2) Orbit Monitoring

µpulse

2241m
2247m
2253m
2259m
2265m
2271m
2278m
2284m
2290m
2296m
2302m
2308m
2314m
2320m
2326m
2332m
2339m
2345m
2351m
2357m
2363m
2369m
2375m
2381m
2387m
2393m
2400m
2406m
2412m
2418m
2424m
2430m
2436m
2442m
2448m
2454m
2461m

B
P

M
re

ad
-o

ut

DESYª
| Data-Driven Diagnosis at EuXFEL | Antonin Sulc | Hamburg, April 27, 2022 Page 15

http://creativecommons.org/licenses/by/4.0/


(2) Data-Driven Orbit Monitoring

Model-Based Orbit Monitoring
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> Credits to R. Kammering.

> Fit a sine and measure residual.

> Pros It is fast and intuitive.

> Cons No intra-bunching instabilities.

Model-Free Orbit Monitoring
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> Series of BPM read-outs.

> Train a model with the anomaly loss.

> Pros Takes into consideration

intra-bunching instabilities.
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(2) Model-Free Data-Driven Orbit Monitoring

h1 =Transformer(x)
input=206, output=512

h2=Transformer(h1)
input=512, output=512

s(φ) := ‖φ− c‖22
input=64, output=1

φ=Linear(h2)
input=512, output=64

φ=Linear(h2)
input=512, output=64︸ ︷︷ ︸

fθ(x)

> Stacked transformers that are scoring series of BPM read-outs

> Each input are stacked horizontal and vertical positions from all beamlines.

> We do not have any faulty labels.

> Unsupervised anomaly loss

L (θ) = ‖f(x; θ)− c‖2
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(2) Model-Free Data-Driven Orbit Monitoring
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(2) Feature Space - TNSE of f(x; θ)
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Thank you!

This is the joint work of A. Eichler and Raimund Kammering!
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