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Conclusion

• Inject distorted inputs already during training phase

• Idea: model never sees raw inputs ➔ should less likely learn 

simulation-specific artefacts


 
Comparison of nominal and adversarial training strategy 

➔ difference: FGSM prior to backpropagation 

• Expect higher robustness and better generalization by 
introducing a saddle point problem — so, let’s check if that is 
indeed the case!


• Evaluation compares predictions of two trainings for nominal and 
systematically distorted test samples — individually generated to 
cause worst possible impact (and to be fair to both contenders)


• ROC curves from inference step, after training has converged ➠


FGSM affects nominal training much more than adversarial 
training, with  equal nominal performance!


• High density of points at high performance: late stages of training 
with only small improvements, close to convergence


• Nominal training: steep drop in robustness towards higher 
raw performance


• Adversarial training maintains its robustness even at high raw 
performance, recovers robustness during training


• Trade-off is not entirely gone, but large improvement compared to 
nominal training


≈

Adversarial training as a defense strategy

FOR N EPOCHS:
       SPLIT WHOLE TRAINING SAMPLE INTO MINIBATCHES
       FOR EVERY MINIBATCH:
               DISTORT INPUTS ( = APPLY FGSM)
               EVALUATE MODEL (FORWARD)
               COMPUTE LOSS (AND APPLY LOSS WEIGHTING)
               ACCUMULATE GRADIENTS OF LOSS (BACKWARD)
               UPDATE MODEL PARAMETERS
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• Evaluate nominal and adversarial training after several epochs / 
checkpoints during training and record raw performance (with 
BvsL AUC) and susceptibility towards adversarial attacks 
(difference between disturbed and raw AUC)

• Adversarial training behaves better than expected, does 
well on nominal samples although it has never seen raw 
inputs during training!

+ higher robustness, compared to nominal training
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Exploring flavor dependence & geometric properties of  the attack and defense, or: what makes the adversarial training robust?

Example:  of first track, 
remove 20% cap for visibility

• Nominal distributions split 

by flavor: filled histograms 
in the background


• Systematically distorted 
samples: lines overlaid in 
foreground


Discriminating power:

• Presence of secondary 

vertex for heavy-flavor jets 
➔ displaced tracks for 
category b (partially also c), 
largest fraction in positive 
region


• No secondary vertex for 
light jets ➔ raw distribution 
of  peaks at zero (and is 
symmetric)
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Nominal training  FGSM ➔ asymmetric shapes


• Shifts light jets into heavy-flavor dominated region and 
vice-versa ➔ FGSM „inverts“ physics


Adversarial training  FGSM ➔ symmetric shapes


• Crafting adversarial inputs for adversarially trained 
model is almost like „coin-flipping“

⊗

⊗

• Clear direction for first-order worst-case adversarial inputs 
for nominal training due to geometry of the loss surface 

• Assume flat loss surface ➔ no preferred direction for 
adversarial examples

• Adversarially trained model expected to be less vulnerable 
to mismodelings in simulation

• Small disturbances of the inputs ➔ noticeable performance drops ➔ 
applicable & concerning for High Energy Physics


• Increased model performance comes with higher susceptibility towards 
adversarial attacks


• Robustness improves with adversarial training 

Next steps
• Test also on detector data and investigate generalization capability

• Apply to more complex NN structures (e.g. convolutional, or graph NN)

• Check vulnerability as a function of input feature space dimension

• Use more harmful attacks and build stronger defense (e.g. train against 

Projected Gradient Descent, PGD)
[1] Reproduced from work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution License. (https://www.tensorflow.org/tutorials/generative/adversarial_fgsm). Labrador Retriever by Mirko CC-BY-SA 3.0 from Wikimedia Commons.

Goal of jet tagging algorithms: identify flavor of a jet’s initiating 
particle (quark, gluon).

Exploit deep learning techniques, reliant on accurate simulation!


Physics analysis: evaluate tagger on measured detector data, 
requires calibration; but residual and invisible mismodelings can 
occur ➔ influence classifier’s performance and robustness.

Benchmark problem: apply adversarial attacks (e.g. FGSM) on 
inputs ➔ investigate classifier response to injected mismodelings.


• Fast Gradient Sign Method maximizes loss function (with 
respect to inputs) ➔ worst-case scenario, up to first order


• Systematic and drastic effect on performance — yet only 
minimal changes of the input features


• Impact on input variables bound to 20% of the value, no 
discrepancies that could not be explained by uncertainties


Example: 
 
input feature 
 
(signed impact 
parameter of 
the first track, 
in transverse 
plane)


• More training leads to better performance — but at the same 
time, the susceptibility towards adversarial attacks increases as 
well!


Probing vulnerability of  a nominal jet tagging algorithm with the Fast Gradient Sign Method (FGSM)

xFGSM = xraw + ϵ ⋅ sgn (∇xraw
J(y, xraw))
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+ ϵ ⋅ →

Classifier: b jet Classifier: light jet
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b

light

c

• O b s e r v e a t r a d e - o f f 
between performance and 
robustness!


• Increased gap between raw 
performance (solid lines) 
a n d p e r f o r m a n c e o n 
distorted samples (dashed 
lines)

• Best performance on raw 
samples


• The larger , the larger 
the impact on model 
performance
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+ ϵ ⋅ →

Classifier: labrador Classifier: saluki
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