
Improving robustness of jet tagging
algorithms with adversarial training

Annika Stein, Xavier Coubez, Spandan Mondal,
Andrzej Novak, Alexander Schmidt

More details in:

arXiv:2203.13890
Follow the QR code! ➠

Presented at Center for Data and Computing in Natural Sciences (CDCS)
Opening Symposium, 26. - 28. April 2022, Hamburg, Germany

Conclusion

• Inject distorted inputs already during training phase
• Idea: model never sees raw inputs ➔ should less likely learn

simulation-specific artefacts

Comparison of nominal and adversarial training strategy

➔ difference: FGSM prior to backpropagation

• Expect higher robustness and better generalization by
introducing a saddle point problem — so, let’s check if that is
indeed the case!

• Evaluation compares predictions of two trainings for nominal and
systematically distorted test samples — individually generated to
cause worst possible impact (and to be fair to both contenders)

• ROC curves from inference step, after training has converged ➠

FGSM affects nominal training much more than adversarial
training, with equal nominal performance!

• High density of points at high performance: late stages of training
with only small improvements, close to convergence

• Nominal training: steep drop in robustness towards higher
raw performance

• Adversarial training maintains its robustness even at high raw
performance, recovers robustness during training

• Trade-off is not entirely gone, but large improvement compared to
nominal training

≈

Adversarial training as a defense strategy

FOR N EPOCHS:
 SPLIT WHOLE TRAINING SAMPLE INTO MINIBATCHES
 FOR EVERY MINIBATCH:
 DISTORT INPUTS (= APPLY FGSM)
 EVALUATE MODEL (FORWARD)
 COMPUTE LOSS (AND APPLY LOSS WEIGHTING)
 ACCUMULATE GRADIENTS OF LOSS (BACKWARD)
 UPDATE MODEL PARAMETERS

FGSM

EpochEpoch

Minibatch Minibatch

Back-
propa-
gation

Back-
propa-
gation

Raw samples

Adversarial
model

Nominal
model

T
ra

in
in

g

In
fe

re
n

c
e

Raw samples

FGSM

Adversarial
model

FGSM

Nominal
model

A
c

q
u

is
it

io
n

 o
f

sa
m

p
le

s
In

je
c

ti
o

n
 o

f
sa

m
p

le
s

4x predictions

Nominal
model

Adversarial
model

• Evaluate nominal and adversarial training after several epochs /
checkpoints during training and record raw performance (with
BvsL AUC) and susceptibility towards adversarial attacks
(difference between disturbed and raw AUC)

• Adversarial training behaves better than expected, does
well on nominal samples although it has never seen raw
inputs during training!
+ higher robustness, compared to nominal training

better

bette
r

Exploring flavor dependence & geometric properties of the attack and defense, or: what makes the adversarial training robust?

Example: of first track,
remove 20% cap for visibility
• Nominal distributions split

by flavor: filled histograms
in the background

• Systematically distorted
samples: lines overlaid in
foreground

Discriminating power:
• Presence of secondary

vertex for heavy-flavor jets
➔ displaced tracks for
category b (partially also c),
largest fraction in positive
region

• No secondary vertex for
light jets ➔ raw distribution
of peaks at zero (and is
symmetric)

d0

d0

Nominal training FGSM ➔ asymmetric shapes

• Shifts light jets into heavy-flavor dominated region and
vice-versa ➔ FGSM „inverts“ physics

Adversarial training FGSM ➔ symmetric shapes

• Crafting adversarial inputs for adversarially trained
model is almost like „coin-flipping“

⊗

⊗

• Clear direction for first-order worst-case adversarial inputs
for nominal training due to geometry of the loss surface

• Assume flat loss surface ➔ no preferred direction for
adversarial examples

• Adversarially trained model expected to be less vulnerable
to mismodelings in simulation

• Small disturbances of the inputs ➔ noticeable performance drops ➔
applicable & concerning for High Energy Physics

• Increased model performance comes with higher susceptibility towards
adversarial attacks

• Robustness improves with adversarial training

Next steps
• Test also on detector data and investigate generalization capability
• Apply to more complex NN structures (e.g. convolutional, or graph NN)
• Check vulnerability as a function of input feature space dimension
• Use more harmful attacks and build stronger defense (e.g. train against

Projected Gradient Descent, PGD)
[1] Reproduced from work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution License. (https://www.tensorflow.org/tutorials/generative/adversarial_fgsm). Labrador Retriever by Mirko CC-BY-SA 3.0 from Wikimedia Commons.

Goal of jet tagging algorithms: identify flavor of a jet’s initiating
particle (quark, gluon).
Exploit deep learning techniques, reliant on accurate simulation!

Physics analysis: evaluate tagger on measured detector data,
requires calibration; but residual and invisible mismodelings can
occur ➔ influence classifier’s performance and robustness.
Benchmark problem: apply adversarial attacks (e.g. FGSM) on
inputs ➔ investigate classifier response to injected mismodelings.

• Fast Gradient Sign Method maximizes loss function (with
respect to inputs) ➔ worst-case scenario, up to first order

• Systematic and drastic effect on performance — yet only
minimal changes of the input features

• Impact on input variables bound to 20% of the value, no
discrepancies that could not be explained by uncertainties

Example:

input feature

(signed impact
parameter of
the first track,
in transverse
plane)

• More training leads to better performance — but at the same
time, the susceptibility towards adversarial attacks increases as
well!

Probing vulnerability of a nominal jet tagging algorithm with the Fast Gradient Sign Method (FGSM)

xFGSM = xraw + ϵ ⋅ sgn (∇xraw
J(y, xraw))

Jet,
Track and

Secondary vertex
properties of a

b jet

Slightly distorted
Jet,

Track and
Secondary vertex

properties of a

b jet

+ ϵ ⋅ →

Classifier: b jet Classifier: light jet

better

better

Deep Neural Network (DNN)

b

light

c

• O b s e r v e a t r a d e - o f f
between performance and
robustness!

• Increased gap between raw
performance (solid lines)
a n d p e r f o r m a n c e o n
distorted samples (dashed
lines)

• Best performance on raw
samples

• The larger , the larger
the impact on model
performance

ϵ

+ ϵ ⋅ →

Classifier: labrador Classifier: saluki

[1]

Computer Vision

Our case

http://www.apple.com/de/
https://developers.google.com/readme/policies
https://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
https://commons.wikimedia.org/wiki/File:YellowLabradorLooking_new.jpg
https://creativecommons.org/licenses/by-sa/3.0/

