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Conclusion

• Inject distorted inputs already during training phase 
• Idea: model never sees raw inputs ➔ should less likely learn 

simulation-specific artefacts 

 
Comparison of nominal and adversarial training strategy 

➔ difference: FGSM prior to backpropagation 

• Expect higher robustness and better generalization by 
introducing a saddle point problem — so, let’s check if that is 
indeed the case! 

• Evaluation compares predictions of two trainings for nominal and 
systematically distorted test samples — individually generated to 
cause worst possible impact (and to be fair to both contenders) 

• ROC curves from inference step, after training has converged ➠ 

FGSM affects nominal training much more than adversarial 
training, with  equal nominal performance! 

• High density of points at high performance: late stages of training 
with only small improvements, close to convergence 

• Nominal training: steep drop in robustness towards higher 
raw performance 

• Adversarial training maintains its robustness even at high raw 
performance, recovers robustness during training 

• Trade-off is not entirely gone, but large improvement compared to 
nominal training 

≈

Adversarial training as a defense strategy

FOR N EPOCHS:
       SPLIT WHOLE TRAINING SAMPLE INTO MINIBATCHES
       FOR EVERY MINIBATCH:
               DISTORT INPUTS ( = APPLY FGSM)
               EVALUATE MODEL (FORWARD)
               COMPUTE LOSS (AND APPLY LOSS WEIGHTING)
               ACCUMULATE GRADIENTS OF LOSS (BACKWARD)
               UPDATE MODEL PARAMETERS
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• Evaluate nominal and adversarial training after several epochs / 
checkpoints during training and record raw performance (with 
BvsL AUC) and susceptibility towards adversarial attacks 
(difference between disturbed and raw AUC)

• Adversarial training behaves better than expected, does 
well on nominal samples although it has never seen raw 
inputs during training! 
+ higher robustness, compared to nominal training
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Exploring flavor dependence & geometric properties of  the attack and defense, or: what makes the adversarial training robust?

Example:  of first track, 
remove 20% cap for visibility 
• Nominal distributions split 

by flavor: filled histograms 
in the background 

• Systematically distorted 
samples: lines overlaid in 
foreground 

Discriminating power: 
• Presence of secondary 

vertex for heavy-flavor jets 
➔ displaced tracks for 
category b (partially also c), 
largest fraction in positive 
region 

• No secondary vertex for 
light jets ➔ raw distribution 
of  peaks at zero (and is 
symmetric)
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Nominal training  FGSM ➔ asymmetric shapes 

• Shifts light jets into heavy-flavor dominated region and 
vice-versa ➔ FGSM „inverts“ physics 

Adversarial training  FGSM ➔ symmetric shapes 

• Crafting adversarial inputs for adversarially trained 
model is almost like „coin-flipping“

⊗

⊗

• Clear direction for first-order worst-case adversarial inputs 
for nominal training due to geometry of the loss surface 

• Assume flat loss surface ➔ no preferred direction for 
adversarial examples

• Adversarially trained model expected to be less vulnerable 
to mismodelings in simulation

• Small disturbances of the inputs ➔ noticeable performance drops ➔ 
applicable & concerning for High Energy Physics 

• Increased model performance comes with higher susceptibility towards 
adversarial attacks 

• Robustness improves with adversarial training 

Next steps
• Test also on detector data and investigate generalization capability 
• Apply to more complex NN structures (e.g. convolutional, or graph NN) 
• Check vulnerability as a function of input feature space dimension 
• Use more harmful attacks and build stronger defense (e.g. train against 

Projected Gradient Descent, PGD)
[1] Reproduced from work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution License. (https://www.tensorflow.org/tutorials/generative/adversarial_fgsm). Labrador Retriever by Mirko CC-BY-SA 3.0 from Wikimedia Commons.

Goal of jet tagging algorithms: identify flavor of a jet’s initiating 
particle (quark, gluon). 
Exploit deep learning techniques, reliant on accurate simulation! 

Physics analysis: evaluate tagger on measured detector data, 
requires calibration; but residual and invisible mismodelings can 
occur ➔ influence classifier’s performance and robustness. 
Benchmark problem: apply adversarial attacks (e.g. FGSM) on 
inputs ➔ investigate classifier response to injected mismodelings. 

• Fast Gradient Sign Method maximizes loss function (with 
respect to inputs) ➔ worst-case scenario, up to first order 

• Systematic and drastic effect on performance — yet only 
minimal changes of the input features 

• Impact on input variables bound to 20% of the value, no 
discrepancies that could not be explained by uncertainties 

Example: 
 
input feature 
 
(signed impact 
parameter of 
the first track, 
in transverse 
plane) 

• More training leads to better performance — but at the same 
time, the susceptibility towards adversarial attacks increases as 
well! 

Probing vulnerability of  a nominal jet tagging algorithm with the Fast Gradient Sign Method (FGSM)

xFGSM = xraw + ϵ ⋅ sgn (∇xraw
J(y, xraw))
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Classifier: b jet Classifier: light jet
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• O b s e r v e a t r a d e - o f f 
between performance and 
robustness! 

• Increased gap between raw 
performance (solid lines) 
a n d p e r f o r m a n c e o n 
distorted samples (dashed 
lines)

• Best performance on raw 
samples 

• The larger , the larger 
the impact on model 
performance 

ϵ

+ ϵ ⋅ →

Classifier: labrador Classifier: saluki
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