Improving robustness of jet tagging
algorithms with adversarial training
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Exploring flavor dependence & geometric properties of the attack and defense, or: what makes the adversarial training robust?
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Conclusion Next steps

Small disturbances of the inputs = noticeable performance drops = Test also on detector data and investigate generalization capability More details in:
applicable & concerning for High Energy Physics Apply to more complex NN structures (e.g. convolutional, or graph NN) arXiv:2203.13890
Increased model performance comes with higher susceptibility towards Check vulnerability as a function of input feature space dimension i ;
adversarial attacks Use more harmful attacks and build stronger defense (e.g. train against Follow the QR code!
Robustness improves with adversarial training Projected Gradient Descent, PGD)

[1] Reproduced from work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution License. (https://www.tensorflow.org/tutorials/generative/adversarial fgsm). Labrador Retriever by Mirko CC-BY-SA 3.0 from Wikimedia Commons.
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