Ellipticity of nonlinear Compton spectrum in linearly polarised background

B. King

b.king@plymouth.ac.uk

LUXE simulation meeting

31-8-21

• For relativistic charges, '1/ γ ' emission cone

- \bullet For relativistic charges, '1/ γ ' emission cone
- Electron's classical momentum in a plane wave:

- \bullet For relativistic charges, '1/ γ ' emission cone
- Electron's classical momentum in a plane wave:

$$\pi_{\rm cl.}^{\mu} = \underbrace{p^{\mu}}_{\rm initial} - \underbrace{a^{\mu}}_{\rm field} + \underbrace{\varkappa^{\mu} \left(\frac{p \cdot a}{\varkappa \cdot p} - \frac{a^2}{2 \varkappa \cdot p} \right)}_{\rm longitudinal \ (to \ field)}$$

• If a^{μ} linearly polarised in e.g. x-direction, $\pi^{\star}/\pi^{\parallel} \sim \xi/\gamma$

- \bullet For relativistic charges, '1/ γ ' emission cone
- Electron's classical momentum in a plane wave:

$$\pi^{\mu}_{\rm cl.} = \underbrace{p^{\mu}}_{\rm initial} - \underbrace{a^{\mu}}_{\rm field} + \underbrace{\varkappa^{\mu} \left(\frac{p \cdot a}{\varkappa \cdot p} - \frac{a^2}{2 \varkappa \cdot p} \right)}_{\rm longitudinal \ (to \ field)}$$

• If a^{μ} linearly polarised in e.g. x-direction, $\pi^{x}/\pi^{\parallel} \sim \xi/\gamma$ \Rightarrow For photon spectrum:

$$rac{k_x}{k_y} \sim \xi$$

- \bullet For relativistic charges, '1/ γ ' emission cone
- Electron's classical momentum in a plane wave:

$$\pi^{\mu}_{\rm cl.} = \underbrace{p^{\mu}}_{\rm initial} - \underbrace{a^{\mu}}_{\rm field} + \underbrace{\varkappa^{\mu} \left(\frac{p \cdot a}{\varkappa \cdot p} - \frac{a^2}{2 \varkappa \cdot p} \right)}_{\rm longitudinal (to field)}$$

• If a^{μ} linearly polarised in e.g. x-direction, $\pi^{\star}/\pi^{\parallel} \sim \xi/\gamma$

 \Rightarrow For photon spectrum:

$$\frac{k_x}{k_y} \sim \xi$$

• Can add radiation reaction ($\alpha\eta\xi^2\Phi \ll 1$)

O Har-Shemesh, A Di Piazza, Optics Lett. **37**, 1352-1354 (2012) T. G. Blackburn et al. PRAB **23**, 064001 (2020)

T. G. Blackburn et al. PRAB 23, 064001 (2020)

4/12 🐯 UNIVERSITY OF PLYMOUTH

What about $\xi < 5$ region?

T. G. Blackburn, A. J. Macleod, B. King, 2103.06673 [hep-ph]

- QED and LMA exist to benchmark with (but slow)
- Simulation with LMA will take several months to implement
- LCFA can be provided in simulation
- $\Rightarrow\,$ Use LCFA in regions where a good approximation.

T. G. Blackburn, A. J. Macleod, B. King, 2103.06673 [hep-ph]

6/12 🐯 UNIVERSITY OF PLYMOUTH

 $\xi = 1$:

7/12 structure of the second s

 $\xi = 2$:

8/12 🐯 UNIVERSITY OF PLYMOUTH

 $\xi = 3$:

9/12 🐯 UNIVERSITY OF PLYMOUTH

 $\xi = 4$:

 $\xi = 5$:

What about $\xi < 5$ region?

- QED and LMA exist to benchmark with (but slow)
- Through benchmarking QED and LCFA for $\xi < 5$, can probably answer the question:

For an accuracy of x%, we require $\xi \gtrsim y....$ what are x and y?

 $\Rightarrow\,$ Use LCFA in regions where a good approximation.