

Linearly polarised lasers: Simulations

Tom Blackburn Department of Physics, University of Gothenburg

31 August 2021 LUXE Simulation and Analysis Task Force

LP simulations How does Ptarmigan simulate photon emission?

GOTHENBURG

- Two possible approximations:
- LCFA: requires that the photon formation time be much smaller than the laser period. If these scales are comparable, interference effects are important and the LCFA fails.
- LMA: move the electron's fast oscillation into the QED rates and use rates for a monochromatic plane EM wave background.

 Rate calculated for a constant, crossed background.

Quantity that enters the rate is the instantaneous (kinetic) momentum π^μ and the quantum parameter χ.

• Equation of motion is the Lorentz force $\dot{\pi}^{\mu} = -e F^{\mu\nu} \pi_{\nu}/m.$ fast quiver motion here

- Rate calculated for a plane EM wave with a slowly varying envelope. fast quiver motion here
- Quantity that enters the rate is the quasi-momentum $q^{\mu} = \langle \pi^{\mu} \rangle$, which is a cycle-averaged quantity, and the local parameters $\langle a^2 \rangle$ and $\eta = k.q/m^2$.
- Equation of motion is the relativistic ponderomotive force $\dot{q} = -\frac{m^2}{2q^0} \nabla \langle a^2 \rangle$

LP simulations How does Ptarmigan simulate photon emission?

GOTHENBURG

- Two possible approximations:
- LCFA is more versatile: any polarisation of background can be built from slices of constant, crossed field
- LMA: more accurate at moderate a₀ and reproduces harmonic structure, but rates are different for different polarisations.

LP simulations LMA rates for a linearly polarised background

$$R^{CP} = \sum_{n=1}^{\infty} \int_{0}^{1} ds \, \left[\cdots J_{n}(z) \cdots \right]$$
$$R^{LP} = \sum_{n=1}^{\infty} \int_{0}^{1} ds \int_{0}^{2\pi} d\varphi \left[\cdots J_{n}(x, y) \cdots \right]$$

- Difficulty comes from the loss of azimuthal symmetry.
- Bessel functions J_n are replaced by generalised Bessel functions J_n(x, y).
 Numerical recipes exist, but generally an extra recurrence relation needs to be evaluated.
- For each harmonic, integrate over both lightfront momentum and angle.

- LCFA agrees well in the angular spectrum for large enough a₀ – particularly if we can ignore photons below a certain energy.
- What is the minimum a₀ that's relevant for the profiler?
- What is the sensitivity as a function of photon energy (if it is a function of photon energy)?

- Phase 0 laser focused to peak $a_0 = 7.0$.
- Nominal electron beam parameters (16.5 GeV energy, 5 micron spot size, 1.4 mm mrad emittance)
- Range of effective a₀s encountered by the electron lead to less elliptical profile.